Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,12 @@ import io
|
|
6 |
from dotenv import load_dotenv
|
7 |
from groq import Groq
|
8 |
from reportlab.lib.pagesizes import letter
|
9 |
-
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
10 |
from reportlab.lib.styles import getSampleStyleSheet
|
11 |
|
|
|
12 |
# CONFIGURATION SETTINGS
|
|
|
13 |
st.set_page_config(
|
14 |
page_title="Smart Diet Analyzer",
|
15 |
page_icon="π",
|
@@ -19,7 +21,10 @@ st.set_page_config(
|
|
19 |
|
20 |
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg']
|
21 |
|
|
|
22 |
# UTILITY FUNCTIONS
|
|
|
|
|
23 |
def initialize_api_client():
|
24 |
"""Initialize Groq API client"""
|
25 |
load_dotenv()
|
@@ -51,35 +56,13 @@ def process_image(uploaded_file):
|
|
51 |
return None, None
|
52 |
|
53 |
|
54 |
-
def generate_pdf(report_text
|
55 |
-
"""Generate a PDF report
|
56 |
buffer = io.BytesIO()
|
57 |
doc = SimpleDocTemplate(buffer, pagesize=letter)
|
58 |
styles = getSampleStyleSheet()
|
59 |
-
|
60 |
-
|
61 |
-
logo_data = base64.b64decode(logo_b64)
|
62 |
-
logo_image = Image.open(io.BytesIO(logo_data))
|
63 |
-
|
64 |
-
# Resize the logo to fit the page width (you can adjust size if necessary)
|
65 |
-
logo_width, logo_height = logo_image.size
|
66 |
-
logo_aspect = logo_height / logo_width
|
67 |
-
max_logo_width = 150 # Adjust as needed
|
68 |
-
logo_width = min(logo_width, max_logo_width)
|
69 |
-
logo_height = int(logo_width * logo_aspect)
|
70 |
-
|
71 |
-
# Create a ReportLab Image element to add the logo to the PDF
|
72 |
-
logo = ReportLabImage(io.BytesIO(logo_data), width=logo_width, height=logo_height)
|
73 |
-
|
74 |
-
# Build the PDF content
|
75 |
-
story = [
|
76 |
-
logo, # Add the logo at the top of the page
|
77 |
-
Spacer(1, 12), # Space after the logo
|
78 |
-
Paragraph("<b>Nutrition Analysis Report</b>", styles['Title']),
|
79 |
-
Spacer(1, 12),
|
80 |
-
Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText'])
|
81 |
-
]
|
82 |
-
|
83 |
doc.build(story)
|
84 |
buffer.seek(0)
|
85 |
return buffer
|
@@ -89,56 +72,53 @@ def generate_analysis(uploaded_file, client):
|
|
89 |
"""Generate AI-powered food analysis"""
|
90 |
base64_image, img_format = process_image(uploaded_file)
|
91 |
if not base64_image:
|
92 |
-
st.error("Image processing failed")
|
93 |
return None
|
94 |
|
95 |
image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
|
96 |
|
97 |
try:
|
98 |
-
st.write("Calling the API...") # Debugging statement
|
99 |
-
|
100 |
-
# Corrected the message format
|
101 |
response = client.chat.completions.create(
|
102 |
model="llama-3.2-11b-vision-preview",
|
103 |
messages=[
|
104 |
{
|
105 |
-
"role": "
|
106 |
-
"content":
|
|
|
107 |
You are an expert nutritionist with advanced image analysis capabilities.
|
108 |
-
Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content
|
|
|
109 |
**Instructions:**
|
110 |
-
-
|
111 |
-
-
|
112 |
-
-
|
113 |
-
-
|
|
|
|
|
114 |
**Output Format:**
|
115 |
- Food Item 1: [Name] β Estimated Calories: [value] kcal
|
116 |
- Food Item 2: [Name] β Estimated Calories: [value] kcal
|
117 |
- ...
|
118 |
- **Total Estimated Calories:** [value] kcal
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
"content": f"Analyze the following image of food: {image_url}" # Include the image URL
|
125 |
}
|
126 |
],
|
127 |
temperature=0.2,
|
128 |
max_tokens=400,
|
129 |
top_p=0.5
|
130 |
)
|
131 |
-
|
132 |
-
st.write("API response received.") # Debugging statement
|
133 |
-
analysis_result = response.choices[0].message.content
|
134 |
-
st.write("Analysis Result: ", analysis_result) # Debugging statement
|
135 |
-
return analysis_result
|
136 |
except Exception as e:
|
137 |
st.error(f"API communication error: {e}")
|
138 |
return None
|
139 |
|
140 |
-
|
141 |
# UI COMPONENTS
|
|
|
|
|
142 |
def display_main_interface():
|
143 |
"""Render primary application interface"""
|
144 |
logo_b64 = encode_image("src/logo.png")
|
@@ -160,7 +140,7 @@ def display_main_interface():
|
|
160 |
|
161 |
# Left column for the Download button
|
162 |
with col1:
|
163 |
-
pdf_report = generate_pdf(st.session_state.analysis_result
|
164 |
st.download_button("π Download Nutrition Report", data=pdf_report, file_name="nutrition_report.pdf", mime="application/pdf")
|
165 |
|
166 |
# Right column for the Clear button
|
@@ -185,14 +165,13 @@ def render_sidebar(client):
|
|
185 |
if st.button("Analyze Meal π½οΈ"):
|
186 |
with st.spinner("Analyzing image..."):
|
187 |
report = generate_analysis(uploaded_file, client)
|
188 |
-
|
189 |
-
|
190 |
-
st.write("Analysis Result:", report) # Debugging line to display result
|
191 |
-
st.rerun()
|
192 |
-
else:
|
193 |
-
st.error("Analysis failed. Please try again.")
|
194 |
|
|
|
195 |
# APPLICATION ENTRYPOINT
|
|
|
|
|
196 |
def main():
|
197 |
"""Primary application controller"""
|
198 |
client = initialize_api_client()
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
from groq import Groq
|
8 |
from reportlab.lib.pagesizes import letter
|
9 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
10 |
from reportlab.lib.styles import getSampleStyleSheet
|
11 |
|
12 |
+
# ======================
|
13 |
# CONFIGURATION SETTINGS
|
14 |
+
# ======================
|
15 |
st.set_page_config(
|
16 |
page_title="Smart Diet Analyzer",
|
17 |
page_icon="π",
|
|
|
21 |
|
22 |
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg']
|
23 |
|
24 |
+
# ======================
|
25 |
# UTILITY FUNCTIONS
|
26 |
+
# ======================
|
27 |
+
|
28 |
def initialize_api_client():
|
29 |
"""Initialize Groq API client"""
|
30 |
load_dotenv()
|
|
|
56 |
return None, None
|
57 |
|
58 |
|
59 |
+
def generate_pdf(report_text):
|
60 |
+
"""Generate a PDF report"""
|
61 |
buffer = io.BytesIO()
|
62 |
doc = SimpleDocTemplate(buffer, pagesize=letter)
|
63 |
styles = getSampleStyleSheet()
|
64 |
+
story = [Paragraph("<b>Nutrition Analysis Report</b>", styles['Title']), Spacer(1, 12),
|
65 |
+
Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText'])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
doc.build(story)
|
67 |
buffer.seek(0)
|
68 |
return buffer
|
|
|
72 |
"""Generate AI-powered food analysis"""
|
73 |
base64_image, img_format = process_image(uploaded_file)
|
74 |
if not base64_image:
|
|
|
75 |
return None
|
76 |
|
77 |
image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
|
78 |
|
79 |
try:
|
|
|
|
|
|
|
80 |
response = client.chat.completions.create(
|
81 |
model="llama-3.2-11b-vision-preview",
|
82 |
messages=[
|
83 |
{
|
84 |
+
"role": "user",
|
85 |
+
"content": [
|
86 |
+
{"type": "text", "text": """
|
87 |
You are an expert nutritionist with advanced image analysis capabilities.
|
88 |
+
Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content as accurately as possible.
|
89 |
+
|
90 |
**Instructions:**
|
91 |
+
- List each identified food item separately.
|
92 |
+
- Use known nutritional data to provide accurate calorie estimates.
|
93 |
+
- Consider portion size, cooking method, and density of food.
|
94 |
+
- Clearly specify if an item's calorie count is an estimate due to ambiguity.
|
95 |
+
- Provide the total estimated calorie count for the entire meal.
|
96 |
+
|
97 |
**Output Format:**
|
98 |
- Food Item 1: [Name] β Estimated Calories: [value] kcal
|
99 |
- Food Item 2: [Name] β Estimated Calories: [value] kcal
|
100 |
- ...
|
101 |
- **Total Estimated Calories:** [value] kcal
|
102 |
+
|
103 |
+
If the image is unclear or lacks enough details, state the limitations and provide a confidence percentage for the estimation.
|
104 |
+
"""},
|
105 |
+
{"type": "image_url", "image_url": {"url": image_url}}
|
106 |
+
]
|
|
|
107 |
}
|
108 |
],
|
109 |
temperature=0.2,
|
110 |
max_tokens=400,
|
111 |
top_p=0.5
|
112 |
)
|
113 |
+
return response.choices[0].message.content
|
|
|
|
|
|
|
|
|
114 |
except Exception as e:
|
115 |
st.error(f"API communication error: {e}")
|
116 |
return None
|
117 |
|
118 |
+
# ======================
|
119 |
# UI COMPONENTS
|
120 |
+
# ======================
|
121 |
+
|
122 |
def display_main_interface():
|
123 |
"""Render primary application interface"""
|
124 |
logo_b64 = encode_image("src/logo.png")
|
|
|
140 |
|
141 |
# Left column for the Download button
|
142 |
with col1:
|
143 |
+
pdf_report = generate_pdf(st.session_state.analysis_result)
|
144 |
st.download_button("π Download Nutrition Report", data=pdf_report, file_name="nutrition_report.pdf", mime="application/pdf")
|
145 |
|
146 |
# Right column for the Clear button
|
|
|
165 |
if st.button("Analyze Meal π½οΈ"):
|
166 |
with st.spinner("Analyzing image..."):
|
167 |
report = generate_analysis(uploaded_file, client)
|
168 |
+
st.session_state.analysis_result = report
|
169 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
# ======================
|
172 |
# APPLICATION ENTRYPOINT
|
173 |
+
# ======================
|
174 |
+
|
175 |
def main():
|
176 |
"""Primary application controller"""
|
177 |
client = initialize_api_client()
|