|
import streamlit as st
|
|
from PIL import Image
|
|
import os
|
|
import base64
|
|
import io
|
|
from dotenv import load_dotenv
|
|
from groq import Groq
|
|
from reportlab.lib.pagesizes import letter
|
|
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
|
from reportlab.lib.styles import getSampleStyleSheet
|
|
|
|
|
|
|
|
|
|
st.set_page_config(
|
|
page_title="Smart Diet Analyzer",
|
|
page_icon="π",
|
|
layout="wide",
|
|
initial_sidebar_state="expanded"
|
|
)
|
|
|
|
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg']
|
|
|
|
|
|
|
|
|
|
|
|
def initialize_api_client():
|
|
"""Initialize Groq API client"""
|
|
load_dotenv()
|
|
api_key = os.getenv("GROQ_API_KEY")
|
|
if not api_key:
|
|
st.error("API key not found. Please verify .env configuration.")
|
|
st.stop()
|
|
return Groq(api_key=api_key)
|
|
|
|
|
|
def encode_image(image_path):
|
|
"""Encode an image to base64"""
|
|
try:
|
|
with open(image_path, "rb") as img_file:
|
|
return base64.b64encode(img_file.read()).decode("utf-8")
|
|
except FileNotFoundError:
|
|
return ""
|
|
|
|
|
|
def process_image(uploaded_file):
|
|
"""Convert image to base64 string"""
|
|
try:
|
|
image = Image.open(uploaded_file)
|
|
buffer = io.BytesIO()
|
|
image.save(buffer, format=image.format)
|
|
return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format
|
|
except Exception as e:
|
|
st.error(f"Image processing error: {e}")
|
|
return None, None
|
|
|
|
|
|
def generate_pdf(report_text):
|
|
"""Generate a PDF report"""
|
|
buffer = io.BytesIO()
|
|
doc = SimpleDocTemplate(buffer, pagesize=letter)
|
|
styles = getSampleStyleSheet()
|
|
story = [Paragraph("<b>Nutrition Analysis Report</b>", styles['Title']), Spacer(1, 12),
|
|
Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText'])]
|
|
doc.build(story)
|
|
buffer.seek(0)
|
|
return buffer
|
|
|
|
|
|
def generate_analysis(uploaded_file, client):
|
|
"""Generate AI-powered food analysis"""
|
|
base64_image, img_format = process_image(uploaded_file)
|
|
if not base64_image:
|
|
return None
|
|
|
|
image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
|
|
|
|
try:
|
|
response = client.chat.completions.create(
|
|
model="llama-3.2-11b-vision-preview",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": """
|
|
You are an expert nutritionist with advanced image analysis capabilities.
|
|
Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content as accurately as possible.
|
|
|
|
**Instructions:**
|
|
- List each identified food item separately.
|
|
- Use known nutritional data to provide accurate calorie estimates.
|
|
- Consider portion size, cooking method, and density of food.
|
|
- Clearly specify if an item's calorie count is an estimate due to ambiguity.
|
|
- Provide the total estimated calorie count for the entire meal.
|
|
|
|
**Output Format:**
|
|
- Food Item 1: [Name] β Estimated Calories: [value] kcal
|
|
- Food Item 2: [Name] β Estimated Calories: [value] kcal
|
|
- ...
|
|
- **Total Estimated Calories:** [value] kcal
|
|
|
|
If the image is unclear or lacks enough details, state the limitations and provide a confidence percentage for the estimation.
|
|
"""},
|
|
{"type": "image_url", "image_url": {"url": image_url}}
|
|
]
|
|
}
|
|
],
|
|
temperature=0.2,
|
|
max_tokens=400,
|
|
top_p=0.5
|
|
)
|
|
return response.choices[0].message.content
|
|
except Exception as e:
|
|
st.error(f"API communication error: {e}")
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def display_main_interface():
|
|
"""Render primary application interface"""
|
|
logo_b64 = encode_image("src/logo.png")
|
|
|
|
|
|
st.markdown(f"""
|
|
<div style="text-align: center;">
|
|
<img src="data:image/png;base64,{logo_b64}" width="100">
|
|
<h2 style="color: #4CAF50;">Smart Diet Analyzer</h2>
|
|
<p style="color: #FF6347;">AI-Powered Food & Nutrition Analysis</p>
|
|
</div>
|
|
""", unsafe_allow_html=True)
|
|
|
|
st.markdown("---")
|
|
|
|
if st.session_state.get('analysis_result'):
|
|
|
|
col1, col2 = st.columns([1, 1])
|
|
|
|
|
|
with col1:
|
|
pdf_report = generate_pdf(st.session_state.analysis_result)
|
|
st.download_button("π Download Nutrition Report", data=pdf_report, file_name="nutrition_report.pdf", mime="application/pdf")
|
|
|
|
|
|
with col2:
|
|
if st.button("Clear Analysis ποΈ"):
|
|
st.session_state.pop('analysis_result')
|
|
st.rerun()
|
|
|
|
if st.session_state.get('analysis_result'):
|
|
st.markdown("### π― Nutrition Analysis Report")
|
|
st.info(st.session_state.analysis_result)
|
|
|
|
|
|
def render_sidebar(client):
|
|
"""Create sidebar UI elements"""
|
|
with st.sidebar:
|
|
st.subheader("Image Upload")
|
|
uploaded_file = st.file_uploader("Upload Food Image", type=ALLOWED_FILE_TYPES)
|
|
|
|
if uploaded_file:
|
|
st.image(Image.open(uploaded_file), caption="Uploaded Food Image")
|
|
if st.button("Analyze Meal π½οΈ"):
|
|
with st.spinner("Analyzing image..."):
|
|
report = generate_analysis(uploaded_file, client)
|
|
st.session_state.analysis_result = report
|
|
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
"""Primary application controller"""
|
|
client = initialize_api_client()
|
|
display_main_interface()
|
|
render_sidebar(client)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|