SURESHBEEKHANI's picture
Update app.py
19ee958 verified
raw
history blame
7.92 kB
import streamlit as st
from PIL import Image
import os
import base64
import io
from dotenv import load_dotenv
from groq import Groq
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage
from reportlab.lib.styles import getSampleStyleSheet
# ======================
# CONFIGURATION SETTINGS
# ======================
st.set_page_config(
page_title="Smart Diet Analyzer",
page_icon="🍎",
layout="wide",
initial_sidebar_state="expanded"
)
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg']
# ======================
# UTILITY FUNCTIONS
# ======================
def initialize_api_client():
"""Initialize Groq API client"""
load_dotenv()
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
st.error("API key not found. Please verify .env configuration.")
st.stop()
return Groq(api_key=api_key)
def encode_image(image_path):
"""Encode an image to base64"""
try:
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode("utf-8")
except FileNotFoundError:
return ""
def resize_image(image):
"""Resize the image to reduce size before encoding it to base64"""
max_width = 800 # Max width in pixels
max_height = 800 # Max height in pixels
image.thumbnail((max_width, max_height))
return image
def compress_image(image):
"""Compress the image to JPEG format with a lower quality to reduce size"""
buffer = io.BytesIO()
image.save(buffer, format="JPEG", quality=70) # Reduce quality to 70%
return base64.b64encode(buffer.getvalue()).decode('utf-8')
def process_image(uploaded_file):
"""Convert uploaded image file to base64 string with compression"""
try:
image = Image.open(uploaded_file)
image = resize_image(image) # Resize the image to reduce its size
base64_image = compress_image(image) # Compress the image
return base64_image, "jpeg" # Use 'jpeg' as format
except Exception as e:
st.error(f"Error processing image: {e}")
return None, None
def generate_pdf(report_text, logo_b64):
"""Generate a PDF report with logo"""
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
# Decode the base64 logo image
logo_data = base64.b64decode(logo_b64)
logo_image = Image.open(io.BytesIO(logo_data))
# Resize the logo to fit the page width (you can adjust size if necessary)
logo_width, logo_height = logo_image.size
logo_aspect = logo_height / logo_width
max_logo_width = 150 # Adjust as needed
logo_width = min(logo_width, max_logo_width)
logo_height = int(logo_width * logo_aspect)
# Create a ReportLab Image element to add the logo to the PDF
logo = ReportLabImage(io.BytesIO(logo_data), width=logo_width, height=logo_height)
# Build the PDF content
story = [
logo, # Add the logo at the top of the page
Spacer(1, 12), # Space after the logo
Paragraph("<b>Nutrition Analysis Report</b>", styles['Title']),
Spacer(1, 12),
Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText'])
]
doc.build(story)
buffer.seek(0)
return buffer
def generate_analysis(uploaded_file, client):
"""Generate nutrition analysis using AI (Groq API)"""
base64_image, img_format = process_image(uploaded_file)
if not base64_image:
st.error("Failed to process image. Cannot generate analysis.")
return None
image_url = f"data:image/{img_format.lower()};base64,{base64_image}"
try:
response = client.chat.completions.create(
model="llama-3.2-11b-vision-preview",
messages=[{
"role": "system", # Define the role for the system message
"content": """
You are an expert nutritionist with advanced image analysis capabilities.
Your task is to analyze the provided image, identify all visible food items, and estimate their calorie content with high accuracy.
**Instructions:**
- Identify and list each food item visible in the image.
- For each item, estimate the calorie content based on standard nutritional data, considering portion size, cooking method, and food density.
- Clearly mark any calorie estimate as "approximate" if based on assumptions due to unclear details.
- Calculate and provide the total estimated calories for the entire meal.
**Output Format:**
- Food Item 1: [Name] – Estimated Calories: [value] kcal
- Food Item 2: [Name] – Estimated Calories: [value] kcal
- ...
- **Total Estimated Calories:** [value] kcal
If the image lacks sufficient detail or is unclear, specify the limitations and include your confidence level in the estimate as a percentage.
"""
},
{
"role": "user", # Define the role for the user message
"content": f"Analyze this image and provide the nutrition analysis: {image_url}"
}],
temperature=0.2,
max_tokens=400,
top_p=0.5
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Error communicating with API: {e}")
return None
# ======================
# UI COMPONENTS
# ======================
def display_main_interface():
"""Render primary application interface"""
logo_b64 = encode_image("src/logo.png")
# HTML with inline styles to change text colors
st.markdown(f"""
<div style="text-align: center;">
<img src="data:image/png;base64,{logo_b64}" width="100">
<h2 style="color: #4CAF50;">Smart Diet Analyzer</h2>
<p style="color: #FF6347;">AI-Powered Food & Nutrition Analysis</p>
</div>
""", unsafe_allow_html=True)
st.markdown("---")
if st.session_state.get('analysis_result'):
# Create two columns: one for download and one for clear button
col1, col2 = st.columns([1, 1])
# Left column for the Download button
with col1:
pdf_report = generate_pdf(st.session_state.analysis_result, logo_b64)
st.download_button("πŸ“„ Download Nutrition Report", data=pdf_report, file_name="nutrition_report.pdf", mime="application/pdf")
# Right column for the Clear button
with col2:
if st.button("Clear Analysis πŸ—‘οΈ"):
st.session_state.pop('analysis_result')
st.rerun()
if st.session_state.get('analysis_result'):
st.markdown("### 🎯 Nutrition Analysis Report")
st.info(st.session_state.analysis_result)
def render_sidebar(client):
"""Create sidebar UI elements"""
with st.sidebar:
st.subheader("Image Upload")
uploaded_file = st.file_uploader("Upload Food Image", type=ALLOWED_FILE_TYPES)
if uploaded_file:
st.image(Image.open(uploaded_file), caption="Uploaded Food Image")
if st.button("Analyze Meal 🍽️"):
with st.spinner("Analyzing image..."):
report = generate_analysis(uploaded_file, client)
st.session_state.analysis_result = report
st.rerun()
# ======================
# APPLICATION ENTRYPOINT
# ======================
def main():
"""Primary application controller"""
client = initialize_api_client()
display_main_interface()
render_sidebar(client)
if __name__ == "__main__":
main()