import streamlit as st from PIL import Image import cv2 import os import base64 import io import pandas as pd from dotenv import load_dotenv from groq import Groq from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer from reportlab.lib.styles import getSampleStyleSheet # ====================== # CONFIGURATION SETTINGS # ====================== PAGE_CONFIG = { "page_title": "Rice Quality Analyzer", "page_icon": "🌾", "layout": "wide", "initial_sidebar_state": "expanded" } ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg'] ALLOWED_VIDEO_TYPES = ['mp4', 'avi', 'mov'] CSS_STYLES = """ """ # ====================== # CORE FUNCTIONS # ====================== def configure_application(): """Initialize application settings and styling""" st.set_page_config(**PAGE_CONFIG) st.markdown(CSS_STYLES, unsafe_allow_html=True) def initialize_api_client(): """Create and validate Groq API client""" load_dotenv() api_key = os.getenv("GROQ_API_KEY") if not api_key: st.error("API key not found. Please verify .env configuration.") st.stop() return Groq(api_key=api_key) def process_image_data(uploaded_file): """Convert image to base64 encoded string""" try: image = Image.open(uploaded_file) buffer = io.BytesIO() image.save(buffer, format=image.format) return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format except Exception as e: st.error(f"Image processing error: {str(e)}") return None, None def generate_rice_report(image_data, img_format, client): """Generate AI-powered rice quality analysis""" if not image_data: return None image_url = f"data:image/{img_format.lower()};base64,{image_data}" try: response = client.chat.completions.create( model="llama-3.2-11b-vision-preview", messages=[{ "role": "user", "content": [ {"type": "text", "text": ( "Analyze the rice grain image and provide a detailed report including:", "Rice type classification", "Quality assessment (broken grains %, discoloration %, impurities %)", "Foreign object detection", "Size and shape consistency", "Recommendations for processing or improvement" )}, {"type": "image_url", "image_url": {"url": image_url}}, ] }], temperature=0.2, max_tokens=400, top_p=0.5 ) return response.choices[0].message.content except Exception as e: st.error(f"API communication error: {str(e)}") return None def format_report_as_table(report_text): """Convert report text into structured table format""" rows = [row.split(': ') for row in report_text.split('\n') if ': ' in row] df = pd.DataFrame(rows, columns=["Category", "Details"]) return df def display_main_interface(): """Render primary application interface""" st.title("🌾 Rice Quality Analyzer") st.subheader("AI-Powered Rice Grain Inspection") st.markdown("---") def render_sidebar(client): """Create sidebar interface elements""" with st.sidebar: st.subheader("Upload Image") uploaded_file = st.file_uploader("Select an image", type=ALLOWED_FILE_TYPES) if uploaded_file: base64_image, img_format = process_image_data(uploaded_file) report = generate_rice_report(base64_image, img_format, client) if report: st.session_state.analysis_result = report st.rerun() if "analysis_result" in st.session_state: st.markdown("### 📋 Analysis Report") report_df = format_report_as_table(st.session_state.analysis_result) st.table(report_df) def main(): configure_application() groq_client = initialize_api_client() display_main_interface() render_sidebar(groq_client) if __name__ == "__main__": main()