|
import streamlit as st |
|
from PIL import Image |
|
import os |
|
import base64 |
|
import io |
|
from dotenv import load_dotenv |
|
from groq import Groq |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer |
|
from reportlab.lib.styles import getSampleStyleSheet |
|
|
|
|
|
|
|
|
|
st.set_page_config( |
|
page_title="Rice Quality Analyzer", |
|
page_icon="πΎ", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg'] |
|
|
|
CSS_STYLES = """ |
|
<style> |
|
.main { background-color: #f4f9f9; color: #000000; } |
|
.sidebar .sidebar-content { background-color: #d1e7dd; } |
|
.stTextInput textarea { color: #000000 !important; } |
|
.stButton>button { |
|
background-color: #21eeef; |
|
color: white; |
|
font-size: 16px; |
|
border-radius: 5px; |
|
} |
|
.report-container { |
|
background-color: #ffffff; |
|
border-radius: 15px; |
|
padding: 20px; |
|
margin-top: 20px; |
|
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); |
|
border-left: 5px solid #21eeef; |
|
} |
|
.report-text { |
|
font-family: 'Arial', sans-serif; |
|
font-size: 14px; |
|
line-height: 1.6; |
|
color: #2c3e50; |
|
} |
|
</style> |
|
""" |
|
st.markdown(CSS_STYLES, unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
|
def initialize_api_client(): |
|
"""Initialize and validate the Groq API client.""" |
|
load_dotenv() |
|
api_key = os.getenv("GROQ_API_KEY") |
|
if not api_key: |
|
st.error("API key not found. Please check .env configuration.") |
|
st.stop() |
|
return Groq(api_key=api_key) |
|
|
|
def process_image_data(uploaded_file): |
|
"""Convert image to base64 encoded string.""" |
|
try: |
|
image = Image.open(uploaded_file) |
|
buffer = io.BytesIO() |
|
image.save(buffer, format=image.format) |
|
return base64.b64encode(buffer.getvalue()).decode('utf-8'), image.format |
|
except Exception as e: |
|
st.error(f"Image processing error: {str(e)}") |
|
return None, None |
|
|
|
def generate_pdf_report(report_text): |
|
"""Generate a PDF report from the analysis text.""" |
|
buffer = io.BytesIO() |
|
doc = SimpleDocTemplate(buffer, pagesize=letter) |
|
styles = getSampleStyleSheet() |
|
story = [ |
|
Paragraph("<b>Rice Quality Report</b>", styles['Title']), |
|
Spacer(1, 12), |
|
Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText']) |
|
] |
|
doc.build(story) |
|
buffer.seek(0) |
|
return buffer |
|
|
|
def generate_rice_report(uploaded_file, client): |
|
"""Generate AI-powered rice quality analysis.""" |
|
base64_image, img_format = process_image_data(uploaded_file) |
|
if not base64_image: |
|
return None |
|
|
|
image_url = f"data:image/{img_format.lower()};base64,{base64_image}" |
|
|
|
try: |
|
response = client.chat.completions.create( |
|
model="llama-3.2-11b-vision-preview", |
|
messages=[ |
|
{"role": "user", "content": [ |
|
{"type": "text", "text": ( |
|
"Analyze the rice grain image and provide a detailed report including:\n" |
|
"1. Rice type classification\n2. Quality assessment (broken grains %, discoloration %, impurities %)\n" |
|
"3. Foreign object detection\n4. Size and shape consistency\n5. Recommendations for processing or improvement\n" |
|
"6. Additional metrics:\n" |
|
" - % Broken kernel (Accuracy < 0.5%)\n" |
|
" - Size analysis per each kernel (Accuracy < 50 micron):\n" |
|
" - Length, Width, Area, Length to Width Ratio\n" |
|
" - Abnormal color and damage kernel recognition:\n" |
|
" - Chalky, Black spots, Yellow (Heat damage), Red (Heat damage), Green kernels\n" |
|
" - Kernel count\n" |
|
" - 1,000 kernels weight\n" |
|
" - Group sizing information" |
|
)}, |
|
{"type": "image_url", "image_url": {"url": image_url}}, |
|
]} |
|
], |
|
temperature=0.2, |
|
max_tokens=400, |
|
top_p=0.5 |
|
) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
st.error(f"API communication error: {str(e)}") |
|
return None |
|
|
|
|
|
|
|
|
|
def display_main_interface(): |
|
"""Render primary application interface.""" |
|
st.title("πΎ Rice Quality Analyzer") |
|
st.subheader("AI-Powered Rice Grain Inspection") |
|
st.markdown("---") |
|
|
|
st.markdown("### Key Benefits:") |
|
st.markdown("- Reduces inspection time by a factor of 10") |
|
st.markdown("- Simple 3-step process: Load sample β Click start β Get results") |
|
st.markdown("- Results stored in a database for traceability and further analysis") |
|
st.markdown("- Integration with 3rd party instruments for higher-level data analysis") |
|
st.markdown("- No minimum sample size required") |
|
st.markdown("- No complicated sample preparation needed") |
|
|
|
if 'analysis_result' in st.session_state: |
|
st.markdown("### π Analysis Report") |
|
st.markdown( |
|
f'<div class="report-container"><div class="report-text">{st.session_state.analysis_result}</div></div>', |
|
unsafe_allow_html=True |
|
) |
|
pdf_report = generate_pdf_report(st.session_state.analysis_result) |
|
st.download_button( |
|
label="π Download PDF Report", |
|
data=pdf_report, |
|
file_name="rice_quality_report.pdf", |
|
mime="application/pdf" |
|
) |
|
|
|
if st.button("Clear Analysis ποΈ"): |
|
st.session_state.pop('analysis_result', None) |
|
st.rerun() |
|
|
|
def main(): |
|
"""Primary application controller.""" |
|
groq_client = initialize_api_client() |
|
display_main_interface() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|