Update app.py
Browse files
app.py
CHANGED
@@ -1,130 +1,100 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from groq import Groq
|
3 |
-
from PIL import Image
|
4 |
-
import os
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
import base64
|
7 |
-
import io
|
8 |
-
|
9 |
-
# Load environment variables
|
10 |
load_dotenv()
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
api_key = os.getenv("GROQ_API_KEY") # Retrieves the API key stored in the .env file
|
14 |
-
|
15 |
-
# Initialize the Groq client with the API key
|
16 |
-
client = Groq(api_key=api_key) # Creates a Groq client object using the API key
|
17 |
-
|
18 |
-
# Page configuration for Streamlit
|
19 |
st.set_page_config(
|
20 |
-
page_title="Llama OCR",
|
21 |
-
page_icon="π¦",
|
22 |
-
layout="wide",
|
23 |
-
initial_sidebar_state="expanded"
|
24 |
)
|
25 |
|
26 |
-
# Function to handle main content of the page
|
27 |
def main_content():
|
28 |
-
st.title("π¦ Llama OCR")
|
29 |
-
st.markdown('<p style="margin-top: -20px;">Extract structured text from images using Llama 3.2 Vision!</p>', unsafe_allow_html=True)
|
30 |
-
st.markdown("---")
|
31 |
|
32 |
-
col1, col2 = st.columns([6, 1])
|
33 |
with col2:
|
34 |
-
if st.button("Clear ποΈ"):
|
35 |
-
if 'ocr_result' in st.session_state:
|
36 |
-
del st.session_state['ocr_result']
|
37 |
-
st.rerun()
|
38 |
|
39 |
-
# Display OCR result in the main content section (if it exists)
|
40 |
if 'ocr_result' in st.session_state:
|
41 |
-
st.markdown("### π― **Extracted Text**")
|
42 |
-
st.markdown(st.session_state['ocr_result'], unsafe_allow_html=True)
|
43 |
|
44 |
-
# Function to handle sidebar content
|
45 |
def sidebar_content():
|
46 |
-
with st.sidebar:
|
47 |
-
st.header("π₯ Upload Image")
|
48 |
|
49 |
-
# Display message if no image is uploaded
|
50 |
if 'ocr_result' not in st.session_state:
|
51 |
-
st.write("### Please upload an image to extract text.")
|
52 |
|
53 |
-
uploaded_file = st.file_uploader("Choose an image...", type=['png', 'jpg', 'jpeg'])
|
54 |
|
55 |
-
if uploaded_file:
|
56 |
-
display_uploaded_image(uploaded_file)
|
57 |
|
58 |
-
# This button triggers the processing of the uploaded image to extract text
|
59 |
if uploaded_file and st.button("Extract Text π") and 'ocr_result' not in st.session_state:
|
60 |
-
with st.spinner("Processing image... Please wait."):
|
61 |
-
process_image(uploaded_file)
|
62 |
|
63 |
-
# If no image is uploaded or processed, clear the sidebar
|
64 |
if not uploaded_file and 'ocr_result' not in st.session_state:
|
65 |
-
st.sidebar.empty()
|
66 |
|
67 |
-
# Function to display the uploaded image
|
68 |
def display_uploaded_image(uploaded_file):
|
69 |
-
image = Image.open(uploaded_file)
|
70 |
-
st.image(image, caption="Uploaded Image", use_container_width=True)
|
71 |
|
72 |
-
# Function to encode the image into base64 format
|
73 |
def encode_image(uploaded_file):
|
74 |
-
image = Image.open(uploaded_file)
|
75 |
-
buffered = io.BytesIO()
|
76 |
-
image.save(buffered, format=image.format)
|
77 |
-
img_byte_array = buffered.getvalue()
|
78 |
-
return base64.b64encode(img_byte_array).decode('utf-8'), image.format
|
79 |
|
80 |
-
# Function to process the image and extract text using Groq API
|
81 |
def process_image(uploaded_file):
|
82 |
-
if uploaded_file:
|
83 |
-
# Encode the uploaded image to base64 and retrieve the image format
|
84 |
base64_image, image_format = encode_image(uploaded_file)
|
85 |
-
|
86 |
-
# Determine the MIME type for the base64 encoded image
|
87 |
mime_type = f"image/{image_format.lower()}"
|
88 |
-
|
89 |
-
# Create a base64 URL for the image
|
90 |
base64_url = f"data:{mime_type};base64,{base64_image}"
|
91 |
|
92 |
-
# Start spinner while waiting for the API response
|
93 |
with st.spinner("Generating response... This may take a moment."):
|
94 |
try:
|
95 |
-
# Call the Groq API to extract text from the image
|
96 |
response = client.chat.completions.create(
|
97 |
-
model="llama-3.2-11b-vision-preview",
|
98 |
messages=[
|
99 |
{
|
100 |
-
"role": "user",
|
101 |
-
"content": [
|
102 |
-
{"type": "text", "text": "Analyze the text in the provided image. Extract all readable content "
|
103 |
-
|
104 |
-
"or code blocks as appropriate for clarity and organization."},
|
105 |
-
{
|
106 |
-
"type": "image_url", # Type of content: image
|
107 |
-
"image_url": {
|
108 |
-
"url": base64_url, # The base64 URL of the uploaded image
|
109 |
-
},
|
110 |
-
},
|
111 |
]
|
112 |
}
|
113 |
],
|
114 |
-
temperature=0.2,
|
115 |
-
max_tokens=200,
|
116 |
-
top_p=0.5,
|
117 |
-
stream=False
|
118 |
)
|
119 |
-
|
120 |
-
# Access the content of the response from the Groq API
|
121 |
message_content = response.choices[0].message.content
|
122 |
-
st.session_state['ocr_result'] = message_content
|
123 |
-
|
124 |
-
|
125 |
-
st.error(f"Error during text extraction: {e}") # Display the error message in the app
|
126 |
|
127 |
-
#
|
128 |
if __name__ == "__main__":
|
129 |
-
|
130 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from groq import Groq
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import base64
|
7 |
+
import io
|
8 |
+
|
9 |
+
# Load environment variables
|
10 |
load_dotenv()
|
11 |
+
api_key = os.getenv("GROQ_API_KEY")
|
12 |
+
client = Groq(api_key=api_key)
|
13 |
|
14 |
+
# Streamlit page configuration
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
st.set_page_config(
|
16 |
+
page_title="Llama OCR",
|
17 |
+
page_icon="π¦",
|
18 |
+
layout="wide",
|
19 |
+
initial_sidebar_state="expanded"
|
20 |
)
|
21 |
|
|
|
22 |
def main_content():
|
23 |
+
st.title("π¦ Llama OCR")
|
24 |
+
st.markdown('<p style="margin-top: -20px;">Extract structured text from images using Llama 3.2 Vision!</p>', unsafe_allow_html=True)
|
25 |
+
st.markdown("---")
|
26 |
|
27 |
+
col1, col2 = st.columns([6, 1])
|
28 |
with col2:
|
29 |
+
if st.button("Clear ποΈ"):
|
30 |
+
if 'ocr_result' in st.session_state:
|
31 |
+
del st.session_state['ocr_result']
|
32 |
+
st.rerun()
|
33 |
|
|
|
34 |
if 'ocr_result' in st.session_state:
|
35 |
+
st.markdown("### π― **Extracted Text**")
|
36 |
+
st.markdown(st.session_state['ocr_result'], unsafe_allow_html=True)
|
37 |
|
|
|
38 |
def sidebar_content():
|
39 |
+
with st.sidebar:
|
40 |
+
st.header("π₯ Upload Image")
|
41 |
|
|
|
42 |
if 'ocr_result' not in st.session_state:
|
43 |
+
st.write("### Please upload an image to extract text.")
|
44 |
|
45 |
+
uploaded_file = st.file_uploader("Choose an image...", type=['png', 'jpg', 'jpeg'])
|
46 |
|
47 |
+
if uploaded_file:
|
48 |
+
display_uploaded_image(uploaded_file)
|
49 |
|
|
|
50 |
if uploaded_file and st.button("Extract Text π") and 'ocr_result' not in st.session_state:
|
51 |
+
with st.spinner("Processing image... Please wait."):
|
52 |
+
process_image(uploaded_file)
|
53 |
|
|
|
54 |
if not uploaded_file and 'ocr_result' not in st.session_state:
|
55 |
+
st.sidebar.empty()
|
56 |
|
|
|
57 |
def display_uploaded_image(uploaded_file):
|
58 |
+
image = Image.open(uploaded_file)
|
59 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
60 |
|
|
|
61 |
def encode_image(uploaded_file):
|
62 |
+
image = Image.open(uploaded_file)
|
63 |
+
buffered = io.BytesIO()
|
64 |
+
image.save(buffered, format=image.format)
|
65 |
+
img_byte_array = buffered.getvalue()
|
66 |
+
return base64.b64encode(img_byte_array).decode('utf-8'), image.format
|
67 |
|
|
|
68 |
def process_image(uploaded_file):
|
69 |
+
if uploaded_file:
|
|
|
70 |
base64_image, image_format = encode_image(uploaded_file)
|
|
|
|
|
71 |
mime_type = f"image/{image_format.lower()}"
|
|
|
|
|
72 |
base64_url = f"data:{mime_type};base64,{base64_image}"
|
73 |
|
|
|
74 |
with st.spinner("Generating response... This may take a moment."):
|
75 |
try:
|
|
|
76 |
response = client.chat.completions.create(
|
77 |
+
model="llama-3.2-11b-vision-preview",
|
78 |
messages=[
|
79 |
{
|
80 |
+
"role": "user",
|
81 |
+
"content": [
|
82 |
+
{"type": "text", "text": "Analyze the text in the provided image. Extract all readable content and present it in a structured Markdown format. Use headings, lists, or code blocks as appropriate for clarity and organization."},
|
83 |
+
{"type": "image_url", "image_url": {"url": base64_url}},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
]
|
85 |
}
|
86 |
],
|
87 |
+
temperature=0.2,
|
88 |
+
max_tokens=200,
|
89 |
+
top_p=0.5,
|
90 |
+
stream=False
|
91 |
)
|
|
|
|
|
92 |
message_content = response.choices[0].message.content
|
93 |
+
st.session_state['ocr_result'] = message_content
|
94 |
+
except Exception as e:
|
95 |
+
st.error(f"Error during text extraction: {e}")
|
|
|
96 |
|
97 |
+
# Corrected execution order: process sidebar first, then main content
|
98 |
if __name__ == "__main__":
|
99 |
+
sidebar_content()
|
100 |
+
main_content()
|