Spaces:
Build error
Build error
Commit
·
74d13e4
1
Parent(s):
127a851
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,12 +8,10 @@ import time
|
|
| 8 |
import psutil
|
| 9 |
import random
|
| 10 |
|
| 11 |
-
|
| 12 |
start_time = time.time()
|
| 13 |
is_colab = utils.is_google_colab()
|
| 14 |
state = None
|
| 15 |
current_steps = 25
|
| 16 |
-
|
| 17 |
class Model:
|
| 18 |
def __init__(self, name, path="", prefix=""):
|
| 19 |
self.name = name
|
|
@@ -21,7 +19,6 @@ class Model:
|
|
| 21 |
self.prefix = prefix
|
| 22 |
self.pipe_t2i = None
|
| 23 |
self.pipe_i2i = None
|
| 24 |
-
|
| 25 |
models = [
|
| 26 |
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
|
| 27 |
Model("Dreamlike Photoreal 2.0", "dreamlike-art/dreamlike-photoreal-2.0", ""),
|
|
@@ -121,20 +118,14 @@ models = [
|
|
| 121 |
Model("Realistic_Vision_V1.4", "SG161222/Realistic_Vision_V1.4", ""),
|
| 122 |
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
]
|
| 128 |
-
|
| 129 |
custom_model = None
|
| 130 |
if is_colab:
|
| 131 |
models.insert(0, Model("Custom model"))
|
| 132 |
custom_model = models[0]
|
| 133 |
-
|
| 134 |
last_mode = "txt2img"
|
| 135 |
current_model = models[1] if is_colab else models[0]
|
| 136 |
current_model_path = current_model.path
|
| 137 |
-
|
| 138 |
if is_colab:
|
| 139 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 140 |
current_model.path,
|
|
@@ -142,7 +133,6 @@ if is_colab:
|
|
| 142 |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
| 143 |
safety_checker=None
|
| 144 |
)
|
| 145 |
-
|
| 146 |
else:
|
| 147 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 148 |
current_model.path,
|
|
@@ -153,57 +143,41 @@ else:
|
|
| 153 |
if torch.cuda.is_available():
|
| 154 |
pipe = pipe.to("cuda")
|
| 155 |
pipe.enable_xformers_memory_efficient_attention()
|
| 156 |
-
|
| 157 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 158 |
-
|
| 159 |
def error_str(error, title="Error"):
|
| 160 |
return f"""#### {title}
|
| 161 |
{error}""" if error else ""
|
| 162 |
-
|
| 163 |
def update_state(new_state):
|
| 164 |
global state
|
| 165 |
state = new_state
|
| 166 |
-
|
| 167 |
def update_state_info(old_state):
|
| 168 |
if state and state != old_state:
|
| 169 |
return gr.update(value=state)
|
| 170 |
-
|
| 171 |
def custom_model_changed(path):
|
| 172 |
models[0].path = path
|
| 173 |
global current_model
|
| 174 |
current_model = models[0]
|
| 175 |
-
|
| 176 |
def on_model_change(model_name):
|
| 177 |
|
| 178 |
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
| 179 |
-
|
| 180 |
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
| 181 |
-
|
| 182 |
def on_steps_change(steps):
|
| 183 |
global current_steps
|
| 184 |
current_steps = steps
|
| 185 |
-
|
| 186 |
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
| 187 |
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
| 188 |
-
|
| 189 |
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
| 190 |
-
|
| 191 |
update_state(" ")
|
| 192 |
-
|
| 193 |
print(psutil.virtual_memory()) # print memory usage
|
| 194 |
-
|
| 195 |
global current_model
|
| 196 |
for model in models:
|
| 197 |
if model.name == model_name:
|
| 198 |
current_model = model
|
| 199 |
model_path = current_model.path
|
| 200 |
-
|
| 201 |
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
| 202 |
if seed == 0:
|
| 203 |
seed = random.randint(0, 2147483647)
|
| 204 |
-
|
| 205 |
generator = torch.Generator('cuda').manual_seed(seed)
|
| 206 |
-
|
| 207 |
try:
|
| 208 |
if img is not None:
|
| 209 |
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
|
@@ -211,19 +185,14 @@ def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height
|
|
| 211 |
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
| 212 |
except Exception as e:
|
| 213 |
return None, error_str(e)
|
| 214 |
-
|
| 215 |
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
| 216 |
-
|
| 217 |
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
| 218 |
-
|
| 219 |
global last_mode
|
| 220 |
global pipe
|
| 221 |
global current_model_path
|
| 222 |
if model_path != current_model_path or last_mode != "txt2img":
|
| 223 |
current_model_path = model_path
|
| 224 |
-
|
| 225 |
update_state(f"Loading {current_model.name} text-to-image model...")
|
| 226 |
-
|
| 227 |
if is_colab or current_model == custom_model:
|
| 228 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 229 |
current_model_path,
|
|
@@ -239,12 +208,10 @@ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width,
|
|
| 239 |
)
|
| 240 |
# pipe = pipe.to("cpu")
|
| 241 |
# pipe = current_model.pipe_t2i
|
| 242 |
-
|
| 243 |
if torch.cuda.is_available():
|
| 244 |
pipe = pipe.to("cuda")
|
| 245 |
pipe.enable_xformers_memory_efficient_attention()
|
| 246 |
last_mode = "txt2img"
|
| 247 |
-
|
| 248 |
prompt = current_model.prefix + prompt
|
| 249 |
result = pipe(
|
| 250 |
prompt,
|
|
@@ -256,23 +223,17 @@ def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width,
|
|
| 256 |
height = height,
|
| 257 |
generator = generator,
|
| 258 |
callback=pipe_callback)
|
| 259 |
-
|
| 260 |
# update_state(f"Done. Seed: {seed}")
|
| 261 |
|
| 262 |
return replace_nsfw_images(result)
|
| 263 |
-
|
| 264 |
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
| 265 |
-
|
| 266 |
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
| 267 |
-
|
| 268 |
global last_mode
|
| 269 |
global pipe
|
| 270 |
global current_model_path
|
| 271 |
if model_path != current_model_path or last_mode != "img2img":
|
| 272 |
current_model_path = model_path
|
| 273 |
-
|
| 274 |
update_state(f"Loading {current_model.name} image-to-image model...")
|
| 275 |
-
|
| 276 |
if is_colab or current_model == custom_model:
|
| 277 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 278 |
current_model_path,
|
|
@@ -293,7 +254,6 @@ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance
|
|
| 293 |
pipe = pipe.to("cuda")
|
| 294 |
pipe.enable_xformers_memory_efficient_attention()
|
| 295 |
last_mode = "img2img"
|
| 296 |
-
|
| 297 |
prompt = current_model.prefix + prompt
|
| 298 |
ratio = min(height / img.height, width / img.width)
|
| 299 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
|
@@ -309,13 +269,10 @@ def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance
|
|
| 309 |
# height = height,
|
| 310 |
generator = generator,
|
| 311 |
callback=pipe_callback)
|
| 312 |
-
|
| 313 |
# update_state(f"Done. Seed: {seed}")
|
| 314 |
|
| 315 |
return replace_nsfw_images(result)
|
| 316 |
-
|
| 317 |
def replace_nsfw_images(results):
|
| 318 |
-
|
| 319 |
if is_colab:
|
| 320 |
return results.images
|
| 321 |
|
|
@@ -323,7 +280,6 @@ def replace_nsfw_images(results):
|
|
| 323 |
if results.nsfw_content_detected[i]:
|
| 324 |
results.images[i] = Image.open("nsfw.png")
|
| 325 |
return results.images
|
| 326 |
-
|
| 327 |
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
| 328 |
# """
|
| 329 |
with gr.Blocks(css="style.css") as demo:
|
|
@@ -358,46 +314,36 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 358 |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
| 359 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
| 360 |
|
| 361 |
-
|
| 362 |
# image_out = gr.Image(height=512)
|
| 363 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
| 364 |
|
| 365 |
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
| 366 |
error_output = gr.Markdown()
|
| 367 |
-
|
| 368 |
with gr.Column(scale=45):
|
| 369 |
with gr.Tab("Options"):
|
| 370 |
with gr.Group():
|
| 371 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
| 372 |
-
|
| 373 |
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=10, step=1)
|
| 374 |
-
|
| 375 |
with gr.Row():
|
| 376 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
| 377 |
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=250, step=1)
|
| 378 |
-
|
| 379 |
with gr.Row():
|
| 380 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=2048, step=8)
|
| 381 |
height = gr.Slider(label="Height", value=512, minimum=64, maximum=2048, step=8)
|
| 382 |
-
|
| 383 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
| 384 |
-
|
| 385 |
with gr.Tab("Image to image"):
|
| 386 |
with gr.Group():
|
| 387 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
| 388 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
| 389 |
-
|
| 390 |
if is_colab:
|
| 391 |
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
| 392 |
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
| 393 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
| 394 |
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
| 395 |
-
|
| 396 |
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
| 397 |
outputs = [gallery, error_output]
|
| 398 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
| 399 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
| 400 |
-
|
| 401 |
ex = gr.Examples([
|
| 402 |
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
|
| 403 |
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
|
|
@@ -405,7 +351,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 405 |
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
|
| 406 |
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
|
| 407 |
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
|
| 408 |
-
|
| 409 |
gr.HTML("""
|
| 410 |
<div style="border-top: 1px solid #303030;">
|
| 411 |
<br>
|
|
@@ -418,11 +363,8 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 418 |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
|
| 419 |
</div>
|
| 420 |
""")
|
| 421 |
-
|
| 422 |
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
| 423 |
-
|
| 424 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
| 425 |
-
|
| 426 |
# if not is_colab:
|
| 427 |
demo.queue(concurrency_count=1)
|
| 428 |
demo.launch(debug=is_colab, share=True)
|
|
|
|
| 8 |
import psutil
|
| 9 |
import random
|
| 10 |
|
|
|
|
| 11 |
start_time = time.time()
|
| 12 |
is_colab = utils.is_google_colab()
|
| 13 |
state = None
|
| 14 |
current_steps = 25
|
|
|
|
| 15 |
class Model:
|
| 16 |
def __init__(self, name, path="", prefix=""):
|
| 17 |
self.name = name
|
|
|
|
| 19 |
self.prefix = prefix
|
| 20 |
self.pipe_t2i = None
|
| 21 |
self.pipe_i2i = None
|
|
|
|
| 22 |
models = [
|
| 23 |
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
|
| 24 |
Model("Dreamlike Photoreal 2.0", "dreamlike-art/dreamlike-photoreal-2.0", ""),
|
|
|
|
| 118 |
Model("Realistic_Vision_V1.4", "SG161222/Realistic_Vision_V1.4", ""),
|
| 119 |
|
| 120 |
|
|
|
|
|
|
|
|
|
|
| 121 |
]
|
|
|
|
| 122 |
custom_model = None
|
| 123 |
if is_colab:
|
| 124 |
models.insert(0, Model("Custom model"))
|
| 125 |
custom_model = models[0]
|
|
|
|
| 126 |
last_mode = "txt2img"
|
| 127 |
current_model = models[1] if is_colab else models[0]
|
| 128 |
current_model_path = current_model.path
|
|
|
|
| 129 |
if is_colab:
|
| 130 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 131 |
current_model.path,
|
|
|
|
| 133 |
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
|
| 134 |
safety_checker=None
|
| 135 |
)
|
|
|
|
| 136 |
else:
|
| 137 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 138 |
current_model.path,
|
|
|
|
| 143 |
if torch.cuda.is_available():
|
| 144 |
pipe = pipe.to("cuda")
|
| 145 |
pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
| 146 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
|
|
|
| 147 |
def error_str(error, title="Error"):
|
| 148 |
return f"""#### {title}
|
| 149 |
{error}""" if error else ""
|
|
|
|
| 150 |
def update_state(new_state):
|
| 151 |
global state
|
| 152 |
state = new_state
|
|
|
|
| 153 |
def update_state_info(old_state):
|
| 154 |
if state and state != old_state:
|
| 155 |
return gr.update(value=state)
|
|
|
|
| 156 |
def custom_model_changed(path):
|
| 157 |
models[0].path = path
|
| 158 |
global current_model
|
| 159 |
current_model = models[0]
|
|
|
|
| 160 |
def on_model_change(model_name):
|
| 161 |
|
| 162 |
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
|
|
|
|
| 163 |
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
|
|
|
|
| 164 |
def on_steps_change(steps):
|
| 165 |
global current_steps
|
| 166 |
current_steps = steps
|
|
|
|
| 167 |
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
|
| 168 |
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
|
|
|
|
| 169 |
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
|
|
|
| 170 |
update_state(" ")
|
|
|
|
| 171 |
print(psutil.virtual_memory()) # print memory usage
|
|
|
|
| 172 |
global current_model
|
| 173 |
for model in models:
|
| 174 |
if model.name == model_name:
|
| 175 |
current_model = model
|
| 176 |
model_path = current_model.path
|
|
|
|
| 177 |
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
| 178 |
if seed == 0:
|
| 179 |
seed = random.randint(0, 2147483647)
|
|
|
|
| 180 |
generator = torch.Generator('cuda').manual_seed(seed)
|
|
|
|
| 181 |
try:
|
| 182 |
if img is not None:
|
| 183 |
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
|
|
|
| 185 |
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
|
| 186 |
except Exception as e:
|
| 187 |
return None, error_str(e)
|
|
|
|
| 188 |
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
|
|
|
|
| 189 |
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
|
|
|
|
| 190 |
global last_mode
|
| 191 |
global pipe
|
| 192 |
global current_model_path
|
| 193 |
if model_path != current_model_path or last_mode != "txt2img":
|
| 194 |
current_model_path = model_path
|
|
|
|
| 195 |
update_state(f"Loading {current_model.name} text-to-image model...")
|
|
|
|
| 196 |
if is_colab or current_model == custom_model:
|
| 197 |
pipe = StableDiffusionPipeline.from_pretrained(
|
| 198 |
current_model_path,
|
|
|
|
| 208 |
)
|
| 209 |
# pipe = pipe.to("cpu")
|
| 210 |
# pipe = current_model.pipe_t2i
|
|
|
|
| 211 |
if torch.cuda.is_available():
|
| 212 |
pipe = pipe.to("cuda")
|
| 213 |
pipe.enable_xformers_memory_efficient_attention()
|
| 214 |
last_mode = "txt2img"
|
|
|
|
| 215 |
prompt = current_model.prefix + prompt
|
| 216 |
result = pipe(
|
| 217 |
prompt,
|
|
|
|
| 223 |
height = height,
|
| 224 |
generator = generator,
|
| 225 |
callback=pipe_callback)
|
|
|
|
| 226 |
# update_state(f"Done. Seed: {seed}")
|
| 227 |
|
| 228 |
return replace_nsfw_images(result)
|
|
|
|
| 229 |
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
|
|
|
|
| 230 |
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
|
|
|
|
| 231 |
global last_mode
|
| 232 |
global pipe
|
| 233 |
global current_model_path
|
| 234 |
if model_path != current_model_path or last_mode != "img2img":
|
| 235 |
current_model_path = model_path
|
|
|
|
| 236 |
update_state(f"Loading {current_model.name} image-to-image model...")
|
|
|
|
| 237 |
if is_colab or current_model == custom_model:
|
| 238 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
| 239 |
current_model_path,
|
|
|
|
| 254 |
pipe = pipe.to("cuda")
|
| 255 |
pipe.enable_xformers_memory_efficient_attention()
|
| 256 |
last_mode = "img2img"
|
|
|
|
| 257 |
prompt = current_model.prefix + prompt
|
| 258 |
ratio = min(height / img.height, width / img.width)
|
| 259 |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
|
|
|
| 269 |
# height = height,
|
| 270 |
generator = generator,
|
| 271 |
callback=pipe_callback)
|
|
|
|
| 272 |
# update_state(f"Done. Seed: {seed}")
|
| 273 |
|
| 274 |
return replace_nsfw_images(result)
|
|
|
|
| 275 |
def replace_nsfw_images(results):
|
|
|
|
| 276 |
if is_colab:
|
| 277 |
return results.images
|
| 278 |
|
|
|
|
| 280 |
if results.nsfw_content_detected[i]:
|
| 281 |
results.images[i] = Image.open("nsfw.png")
|
| 282 |
return results.images
|
|
|
|
| 283 |
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
| 284 |
# """
|
| 285 |
with gr.Blocks(css="style.css") as demo:
|
|
|
|
| 314 |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
| 315 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
| 316 |
|
|
|
|
| 317 |
# image_out = gr.Image(height=512)
|
| 318 |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
|
| 319 |
|
| 320 |
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
|
| 321 |
error_output = gr.Markdown()
|
|
|
|
| 322 |
with gr.Column(scale=45):
|
| 323 |
with gr.Tab("Options"):
|
| 324 |
with gr.Group():
|
| 325 |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
|
|
|
| 326 |
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=10, step=1)
|
|
|
|
| 327 |
with gr.Row():
|
| 328 |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
| 329 |
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=250, step=1)
|
|
|
|
| 330 |
with gr.Row():
|
| 331 |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=2048, step=8)
|
| 332 |
height = gr.Slider(label="Height", value=512, minimum=64, maximum=2048, step=8)
|
|
|
|
| 333 |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
|
|
|
| 334 |
with gr.Tab("Image to image"):
|
| 335 |
with gr.Group():
|
| 336 |
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
| 337 |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
|
|
|
| 338 |
if is_colab:
|
| 339 |
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
|
| 340 |
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
| 341 |
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
| 342 |
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
|
|
|
|
| 343 |
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
|
| 344 |
outputs = [gallery, error_output]
|
| 345 |
prompt.submit(inference, inputs=inputs, outputs=outputs)
|
| 346 |
generate.click(inference, inputs=inputs, outputs=outputs)
|
|
|
|
| 347 |
ex = gr.Examples([
|
| 348 |
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
|
| 349 |
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
|
|
|
|
| 351 |
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
|
| 352 |
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
|
| 353 |
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
|
|
|
|
| 354 |
gr.HTML("""
|
| 355 |
<div style="border-top: 1px solid #303030;">
|
| 356 |
<br>
|
|
|
|
| 363 |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
|
| 364 |
</div>
|
| 365 |
""")
|
|
|
|
| 366 |
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
|
|
|
|
| 367 |
print(f"Space built in {time.time() - start_time:.2f} seconds")
|
|
|
|
| 368 |
# if not is_colab:
|
| 369 |
demo.queue(concurrency_count=1)
|
| 370 |
demo.launch(debug=is_colab, share=True)
|