from datetime import datetime import streamlit as st from pymongo import MongoClient from openai import OpenAI from bson import ObjectId import json from dotenv import load_dotenv import os import google.generativeai as genai load_dotenv() MONGO_URI = os.getenv('MONGO_URI') OPENAI_API_KEY = os.getenv('OPENAI_KEY') GEMINI_API_KEY = os.getenv('GEMINI_KEY') genai.configure(api_key=GEMINI_API_KEY) model = genai.GenerativeModel("gemini-1.5-flash") client = MongoClient(MONGO_URI) db = client['novascholar_db'] # db.create_collection("rubrics") rubrics_collection = db['rubrics'] resources_collection = db['resources'] courses_collection = db['courses'] def generate_rubrics(session_title, outcomes, pre_class_material): # Format outcomes for prompt outcomes_text = "\n".join([ f"Outcome {i+1}:\n- Description: {outcome.get('outcome_description')}\n- Taxonomy Level: {outcome.get('bloom_taxanomy_level')}" for i, outcome in enumerate(outcomes) ]) prompt = f""" You are an expert educational AI assistant specializing in instructional design. Generate a detailed rubric for the session titled "{session_title}". The rubric should cover multiple learning outcomes and use numerical scoring levels (4,3,2,1). Use the following context: Session Outcomes Description: {outcomes_text} Pre-class Material: {pre_class_material} Please generate the rubric in JSON format with these specifications: 1. Use numerical levels (4=Highest, 1=Lowest) instead of descriptive levels 2. Include 4-5 relevant criteria based on the session outcome 3. Each criterion should have clear descriptors for each numerical level 4. Focus on objectively measurable aspects for evaluation 5. Structure should be suitable for evaluating assignments and test answers ***IMPORTANT: DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.*** """ messages = [ { "role": "system", "content": "You are an expert educational AI assistant specializing in instructional design.", }, { "role": "user", "content": prompt }, ] try: response = model.generate_content( prompt, generation_config=genai.GenerationConfig( response_mime_type="application/json" ) ) return response.text except Exception as e: st.error(f"Failed to generate rubrics: {e}") return None def display_rubrics_tab(session, course_id): st.subheader("Generated Rubrics") # Fetch session details from the courses collection course_data = courses_collection.find_one( {"course_id": course_id, "sessions.session_id": session['session_id']}, {"sessions.$": 1} ) if course_data and 'sessions' in course_data and len(course_data['sessions']) > 0: session_data = course_data['sessions'][0] # Extract session learning outcomes if 'session_learning_outcomes' in session_data and len(session_data['session_learning_outcomes']) > 0: outcomes = session_data['session_learning_outcomes'] # outcome_description = outcome.get('outcome_description', None) # taxonomy_level = outcome.get('bloom_taxonomy_level', None) # Display fetched information st.markdown("### Session Information") st.markdown(f"**Session Title:** {session['title']}") # st.markdown(f"**Learning Outcome:** {outcome_description}") # if taxonomy_level: # st.markdown(f"**Taxonomy Level:** {taxonomy_level}") # Display all learning outcomes st.markdown("### Learning Outcomes:") for i, outcome in enumerate(outcomes, 1): st.markdown(f""" **Outcome {i}:** - Description: {outcome.get('outcome_description')} - Taxonomy Level: {outcome.get('bloom_taxanomy_level')} """) # Fetch pre-class material pre_class_material_docs = resources_collection.find({"session_id": session['session_id']}) pre_class_material = "\n".join([f"{doc.get('title', 'No Title')}: {doc.get('url', 'No URL')}" for doc in pre_class_material_docs]) if st.button("Generate Rubric"): rubric = generate_rubrics( session['title'], outcomes, pre_class_material ) if rubric: st.json(rubric) # if st.button("Save Rubric"): rubric_data = { "course_id": course_id, "session_id": session['session_id'], "rubric": json.loads(rubric), "outcomes": outcomes, "created_at": datetime.now() } # rubrics_collection.insert_one(rubric_data) # st.success("Rubric saved successfully!") # Check for existing rubric and update or insert existing_rubric = rubrics_collection.find_one({ "session_id": session['session_id'] }) if existing_rubric: rubrics_collection.update_one( {"_id": existing_rubric["_id"]}, {"$set": rubric_data} ) st.success("Rubric updated successfully!") else: rubrics_collection.insert_one(rubric_data) st.success("Rubric saved successfully!") # Display existing rubric if available existing_rubric = rubrics_collection.find_one({ "session_id": session['session_id'] }) if existing_rubric: with st.expander("View Existing Rubric"): st.json(existing_rubric['rubric']) st.caption(f"Last updated: {existing_rubric['created_at'].strftime('%Y-%m-%d %H:%M:%S')}") if st.button("Generate New Rubric", key="new_rubric"): st.rerun() else: st.error("No learning outcomes found for this session") else: st.error("Session data not found")