Harshal Vhatkar
commited on
Commit
·
459b8b0
1
Parent(s):
cea9944
integrate new features
Browse files- app.py +1 -1
- live_chat_feature.py +530 -0
- pre_class_analytics3.py +499 -0
- session_page.py +331 -232
app.py
CHANGED
@@ -93,7 +93,7 @@ def login_user(username, password, user_type):
|
|
93 |
# user = students_collection.find_one({"full_name": username}) or students_collection.find_one({"username": username})
|
94 |
user = students_collection.find_one({"$or": [{"full_name": username}, {"username": username}]})
|
95 |
elif user_type == "faculty":
|
96 |
-
user = faculty_collection.find_one({"full_name": username})
|
97 |
elif user_type == "research_assistant":
|
98 |
user = research_assistants_collection.find_one({"full_name": username})
|
99 |
elif user_type == "analyst":
|
|
|
93 |
# user = students_collection.find_one({"full_name": username}) or students_collection.find_one({"username": username})
|
94 |
user = students_collection.find_one({"$or": [{"full_name": username}, {"username": username}]})
|
95 |
elif user_type == "faculty":
|
96 |
+
user = faculty_collection.find_one({"$or": [{"full_name": username}, {"username": username}]})
|
97 |
elif user_type == "research_assistant":
|
98 |
user = research_assistants_collection.find_one({"full_name": username})
|
99 |
elif user_type == "analyst":
|
live_chat_feature.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from pymongo import MongoClient
|
3 |
+
from datetime import datetime, timedelta
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import os
|
6 |
+
import google.generativeai as genai
|
7 |
+
from file_upload_vectorize import resources_collection, vectors_collection
|
8 |
+
# Load environment variables
|
9 |
+
load_dotenv()
|
10 |
+
MONGO_URI = os.getenv("MONGO_URI")
|
11 |
+
client = MongoClient(MONGO_URI)
|
12 |
+
db = client["novascholar_db"]
|
13 |
+
live_chat_sessions_collection = db["live_chat_sessions"]
|
14 |
+
|
15 |
+
# Initialize AI model
|
16 |
+
genai.configure(api_key=os.getenv("GEMINI_KEY"))
|
17 |
+
model = genai.GenerativeModel("gemini-1.5-flash")
|
18 |
+
|
19 |
+
|
20 |
+
def display_live_chat_interface(session, user_id, course_id):
|
21 |
+
"""Main interface for live chat sessions - handles both faculty and student views"""
|
22 |
+
st.markdown("<div style='margin-top: 20px;'></div>", unsafe_allow_html=True)
|
23 |
+
st.subheader("Live Class Chat Session")
|
24 |
+
|
25 |
+
# Initialize session states
|
26 |
+
if 'chat_active' not in st.session_state:
|
27 |
+
st.session_state.chat_active = False
|
28 |
+
if 'chat_end_time' not in st.session_state:
|
29 |
+
st.session_state.chat_end_time = None
|
30 |
+
if 'messages' not in st.session_state:
|
31 |
+
st.session_state.messages = []
|
32 |
+
|
33 |
+
# Faculty View
|
34 |
+
if st.session_state.user_type == "faculty":
|
35 |
+
display_faculty_controls(session, user_id, course_id)
|
36 |
+
# Student View
|
37 |
+
else:
|
38 |
+
display_student_view(session, user_id, course_id)
|
39 |
+
|
40 |
+
def create_timer_html(end_time):
|
41 |
+
"""Create a simplified but reliable timer component"""
|
42 |
+
end_timestamp = int(end_time.timestamp() * 1000) # Convert to milliseconds
|
43 |
+
current_timestamp = int(datetime.utcnow().timestamp() * 1000)
|
44 |
+
|
45 |
+
return f"""
|
46 |
+
<div id="timer-container">
|
47 |
+
<style>
|
48 |
+
.timer-box {{
|
49 |
+
background: #f0f2f6;
|
50 |
+
border-radius: 8px;
|
51 |
+
padding: 15px;
|
52 |
+
text-align: center;
|
53 |
+
margin: 10px 0;
|
54 |
+
}}
|
55 |
+
.timer-display {{
|
56 |
+
font-size: 24px;
|
57 |
+
font-weight: bold;
|
58 |
+
color: #0066cc;
|
59 |
+
margin-bottom: 10px;
|
60 |
+
}}
|
61 |
+
.progress-bar {{
|
62 |
+
width: 100%;
|
63 |
+
height: 8px;
|
64 |
+
background: #e0e0e0;
|
65 |
+
border-radius: 4px;
|
66 |
+
overflow: hidden;
|
67 |
+
}}
|
68 |
+
.progress {{
|
69 |
+
height: 100%;
|
70 |
+
background: #00aa00;
|
71 |
+
transition: width 1s linear;
|
72 |
+
}}
|
73 |
+
</style>
|
74 |
+
|
75 |
+
<div class="timer-box">
|
76 |
+
<div id="timer" class="timer-display">Calculating...</div>
|
77 |
+
<div class="progress-bar">
|
78 |
+
<div id="progress" class="progress"></div>
|
79 |
+
</div>
|
80 |
+
</div>
|
81 |
+
|
82 |
+
<script>
|
83 |
+
function updateTimer() {{
|
84 |
+
const endTime = {end_timestamp};
|
85 |
+
const startTime = {current_timestamp};
|
86 |
+
const now = new Date().getTime();
|
87 |
+
const totalDuration = endTime - startTime;
|
88 |
+
const timeLeft = endTime - now;
|
89 |
+
|
90 |
+
const timer = document.getElementById('timer');
|
91 |
+
const progress = document.getElementById('progress');
|
92 |
+
|
93 |
+
if (timeLeft <= 0) {{
|
94 |
+
timer.innerHTML = 'Session Ended';
|
95 |
+
timer.style.color = '#ff4444';
|
96 |
+
progress.style.width = '100%';
|
97 |
+
progress.style.background = '#ff4444';
|
98 |
+
return;
|
99 |
+
}}
|
100 |
+
|
101 |
+
const minutes = Math.floor(timeLeft / (1000 * 60));
|
102 |
+
const seconds = Math.floor((timeLeft % (1000 * 60)) / 1000);
|
103 |
+
const progressWidth = ((totalDuration - timeLeft) / totalDuration) * 100;
|
104 |
+
|
105 |
+
timer.innerHTML = `${{minutes}}:${{seconds < 10 ? '0' : ''}}${{seconds}}`;
|
106 |
+
progress.style.width = `${{progressWidth}}%`;
|
107 |
+
|
108 |
+
if (minutes < 5) {{
|
109 |
+
progress.style.background = '#ffa500';
|
110 |
+
}}
|
111 |
+
}}
|
112 |
+
|
113 |
+
const timerInterval = setInterval(updateTimer, 1000);
|
114 |
+
updateTimer();
|
115 |
+
</script>
|
116 |
+
</div>
|
117 |
+
"""
|
118 |
+
|
119 |
+
# def display_timer(end_time):
|
120 |
+
# """Display a simple countdown timer"""
|
121 |
+
# if not isinstance(end_time, datetime):
|
122 |
+
# return
|
123 |
+
|
124 |
+
# # Calculate remaining time
|
125 |
+
# remaining_time = end_time - datetime.utcnow()
|
126 |
+
|
127 |
+
# if remaining_time.total_seconds() <= 0:
|
128 |
+
# st.session_state.chat_active = False
|
129 |
+
# st.session_state.chat_end_time = None
|
130 |
+
# return
|
131 |
+
|
132 |
+
# # Convert to minutes and seconds
|
133 |
+
# total_seconds = int(remaining_time.total_seconds())
|
134 |
+
# minutes = total_seconds // 60
|
135 |
+
# seconds = total_seconds % 60
|
136 |
+
|
137 |
+
# # Create a progress value between 0 and 100
|
138 |
+
# original_duration = st.session_state.get('original_duration', 15) * 60 # default 15 minutes in seconds
|
139 |
+
# progress = ((original_duration - total_seconds) / original_duration)
|
140 |
+
|
141 |
+
# # Display timer using columns for better layout
|
142 |
+
# col1, col2 = st.columns([1, 28])
|
143 |
+
|
144 |
+
# with col1:
|
145 |
+
# st.markdown("### ⏱️")
|
146 |
+
# with col2:
|
147 |
+
# # Display time remaining
|
148 |
+
# st.markdown(f"### {minutes:02d}:{seconds:02d}")
|
149 |
+
|
150 |
+
# # Display progress bar
|
151 |
+
# if minutes < 5:
|
152 |
+
# color = "orange"
|
153 |
+
# else:
|
154 |
+
# color = "blue"
|
155 |
+
|
156 |
+
# st.progress(progress, text="Session Progress")
|
157 |
+
|
158 |
+
def display_timer(end_time):
|
159 |
+
"""Display a simple countdown timer"""
|
160 |
+
if not isinstance(end_time, datetime):
|
161 |
+
return
|
162 |
+
|
163 |
+
# Calculate remaining time
|
164 |
+
remaining_time = end_time - datetime.utcnow()
|
165 |
+
|
166 |
+
if remaining_time.total_seconds() <= 0:
|
167 |
+
st.session_state.chat_active = False
|
168 |
+
st.session_state.chat_end_time = None
|
169 |
+
return
|
170 |
+
|
171 |
+
# Convert to minutes and seconds
|
172 |
+
total_seconds = int(remaining_time.total_seconds())
|
173 |
+
minutes = total_seconds // 60
|
174 |
+
seconds = total_seconds % 60
|
175 |
+
|
176 |
+
# Create a progress value between 0 and 100
|
177 |
+
original_duration = st.session_state.get('original_duration', 15) * 60 # default 15 minutes in seconds
|
178 |
+
progress = ((original_duration - total_seconds) / original_duration)
|
179 |
+
|
180 |
+
# Custom CSS for timer layout
|
181 |
+
st.markdown("""
|
182 |
+
<style>
|
183 |
+
.timer-container {{
|
184 |
+
margin: 1rem 0;
|
185 |
+
}}
|
186 |
+
.timer-row {{
|
187 |
+
display: flex;
|
188 |
+
justify-content: space-between;
|
189 |
+
align-items: center;
|
190 |
+
gap: 1rem;
|
191 |
+
margin-bottom: 0.15rem;
|
192 |
+
}}
|
193 |
+
.timer-icon {{
|
194 |
+
font-size: 1.5rem;
|
195 |
+
}}
|
196 |
+
.timer-text {{
|
197 |
+
font-size: 1.2rem;
|
198 |
+
font-weight: bold;
|
199 |
+
}}
|
200 |
+
.timer-progress-label {{
|
201 |
+
font-size: 1.1rem;
|
202 |
+
font-weight: semi-bold;
|
203 |
+
}}
|
204 |
+
.stProgress {{
|
205 |
+
margin-bottom: 0.25rem;
|
206 |
+
}}
|
207 |
+
.stChatInputContainer {{
|
208 |
+
margin-top: 1rem;
|
209 |
+
}}
|
210 |
+
</style>
|
211 |
+
|
212 |
+
<div class="timer-container">
|
213 |
+
<div class="timer-row">
|
214 |
+
<div class="progress-text"><span class="timer-progress-label">Session Progress</span></div>
|
215 |
+
<div class="timer-progress">
|
216 |
+
<span class="timer-icon">⏱️</span>
|
217 |
+
<span class="timer-text">{:02d}:{:02d}</span>
|
218 |
+
</div>
|
219 |
+
</div>
|
220 |
+
</div>
|
221 |
+
""".format(minutes, seconds), unsafe_allow_html=True)
|
222 |
+
|
223 |
+
# Display progress bar
|
224 |
+
color = "orange" if minutes < 5 else "blue"
|
225 |
+
st.progress(progress)
|
226 |
+
|
227 |
+
def display_faculty_controls(session, faculty_id, course_id):
|
228 |
+
"""Display faculty controls for managing chat sessions"""
|
229 |
+
|
230 |
+
# Show scheduled sessions
|
231 |
+
st.markdown("<div style='margin-top: 20px;'></div>", unsafe_allow_html=True)
|
232 |
+
st.markdown("##### 📅 Scheduled Chat Sessions")
|
233 |
+
scheduled_sessions = list(live_chat_sessions_collection.find({
|
234 |
+
"session_id": session['session_id'],
|
235 |
+
"status": "scheduled"
|
236 |
+
}))
|
237 |
+
|
238 |
+
# Schedule new session
|
239 |
+
with st.expander("➕ Schedule New Chat Session"):
|
240 |
+
col1, col2, col3 = st.columns([2, 2, 1])
|
241 |
+
with col1:
|
242 |
+
session_date = st.date_input("📅 Date", min_value=datetime.now().date())
|
243 |
+
with col2:
|
244 |
+
session_time = st.time_input("🕒 Time", value=datetime.now().time())
|
245 |
+
with col3:
|
246 |
+
duration = st.selectbox(
|
247 |
+
"⏱️ Duration (mins)",
|
248 |
+
options=[5, 10, 15, 20, 30, 45, 60],
|
249 |
+
index=2
|
250 |
+
)
|
251 |
+
|
252 |
+
if st.button("📋 Schedule Session"):
|
253 |
+
session_datetime = datetime.combine(session_date, session_time)
|
254 |
+
if session_datetime < datetime.now():
|
255 |
+
st.error("❌ Cannot schedule sessions in the past!")
|
256 |
+
else:
|
257 |
+
live_chat_sessions_collection.insert_one({
|
258 |
+
"session_id": session['session_id'],
|
259 |
+
"course_id": course_id,
|
260 |
+
"faculty_id": faculty_id,
|
261 |
+
"start_time": session_datetime,
|
262 |
+
"duration": duration,
|
263 |
+
"status": "scheduled",
|
264 |
+
"chats": []
|
265 |
+
})
|
266 |
+
st.success("✅ Chat session scheduled successfully!")
|
267 |
+
st.rerun()
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
if scheduled_sessions:
|
272 |
+
for scheduled in scheduled_sessions:
|
273 |
+
with st.expander(f"📌 Scheduled: {scheduled['start_time'].strftime('%I:%M %p')}"):
|
274 |
+
st.write(f"⏱️ Duration: {scheduled['duration']} minutes")
|
275 |
+
if st.button("❌ Cancel Session", key=f"cancel_{scheduled['_id']}", type="secondary"):
|
276 |
+
live_chat_sessions_collection.delete_one({"_id": scheduled['_id']})
|
277 |
+
st.rerun()
|
278 |
+
|
279 |
+
# Start immediate session
|
280 |
+
if not st.session_state.get('chat_active', False):
|
281 |
+
st.markdown("<div style='margin-top: 20px;'></div>", unsafe_allow_html=True)
|
282 |
+
st.markdown("##### 🎯 Start Immediate Session")
|
283 |
+
col1, col2 = st.columns([3, 1])
|
284 |
+
with col1:
|
285 |
+
immediate_duration = st.selectbox(
|
286 |
+
"⏱️ Select duration (minutes)",
|
287 |
+
options=[5, 10, 15, 20, 30, 45, 60],
|
288 |
+
index=2
|
289 |
+
)
|
290 |
+
with col2:
|
291 |
+
st.markdown("<div style='margin-top: 26px;'>", unsafe_allow_html=True)
|
292 |
+
if st.button("▶️ Start", use_container_width=True):
|
293 |
+
st.session_state.chat_active = True
|
294 |
+
st.session_state.chat_end_time = datetime.utcnow() + timedelta(minutes=immediate_duration)
|
295 |
+
st.session_state.original_duration = immediate_duration # Store original duration
|
296 |
+
live_chat_sessions_collection.insert_one({
|
297 |
+
"session_id": session['session_id'],
|
298 |
+
"course_id": course_id,
|
299 |
+
"faculty_id": faculty_id,
|
300 |
+
"start_time": datetime.utcnow(),
|
301 |
+
"duration": immediate_duration,
|
302 |
+
"status": "active",
|
303 |
+
"chats": []
|
304 |
+
})
|
305 |
+
st.rerun()
|
306 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
307 |
+
else:
|
308 |
+
# Show timer for active session
|
309 |
+
if hasattr(st.session_state, 'chat_end_time'):
|
310 |
+
display_timer(st.session_state.chat_end_time)
|
311 |
+
|
312 |
+
if st.button("⏹️ End Session", type="secondary"):
|
313 |
+
st.session_state.chat_active = False
|
314 |
+
st.session_state.chat_end_time = None
|
315 |
+
live_chat_sessions_collection.update_one(
|
316 |
+
{"session_id": session['session_id'], "status": "active"},
|
317 |
+
{"$set": {"status": "completed", "end_time": datetime.utcnow()}}
|
318 |
+
)
|
319 |
+
st.rerun()
|
320 |
+
|
321 |
+
def get_session_context(session, session_id, course_id):
|
322 |
+
"""Retrieve session context for AI model"""
|
323 |
+
# Get session data
|
324 |
+
session = live_chat_sessions_collection.find_one({"session_id": session_id})
|
325 |
+
if not session:
|
326 |
+
st.error("Session not found")
|
327 |
+
return
|
328 |
+
|
329 |
+
# Get pre-class materials
|
330 |
+
context = ""
|
331 |
+
materials = resources_collection.find({"session_id": session_id})
|
332 |
+
for material in materials:
|
333 |
+
resource_id = material['_id']
|
334 |
+
vector_data = vectors_collection.find_one({"resource_id": resource_id})
|
335 |
+
if vector_data and 'text' in vector_data:
|
336 |
+
context += vector_data['text'] + "\n"
|
337 |
+
|
338 |
+
courses_collection = db["courses"]
|
339 |
+
course = courses_collection.find_one({"_id": course_id})
|
340 |
+
session = courses_collection.find_one({"sessions.session_id": session_id})
|
341 |
+
if course:
|
342 |
+
context += f"Course: {course['course_name']}\n"
|
343 |
+
if session:
|
344 |
+
context += f"Session: {session['title']}\n"
|
345 |
+
if 'session_learning_outcomes' in session:
|
346 |
+
context += f"Session Learning Outcomes: {', '.join(session['session_learning_outcomes'])}\n"
|
347 |
+
return context
|
348 |
+
|
349 |
+
def display_student_view(session, student_id, course_id):
|
350 |
+
"""Display student interface for chat sessions"""
|
351 |
+
|
352 |
+
# Show upcoming scheduled sessions
|
353 |
+
st.markdown("<div style='margin-top: 20px;'></div>", unsafe_allow_html=True)
|
354 |
+
st.markdown("##### 📅 Upcoming Chat Sessions")
|
355 |
+
upcoming_sessions = list(live_chat_sessions_collection.find({
|
356 |
+
"session_id": session['session_id'],
|
357 |
+
"status": "scheduled",
|
358 |
+
"start_time": {"$gt": datetime.utcnow()}
|
359 |
+
}).sort("start_time", 1))
|
360 |
+
|
361 |
+
if upcoming_sessions:
|
362 |
+
for upcoming in upcoming_sessions:
|
363 |
+
with st.expander(f"📌 {upcoming['start_time'].strftime('%I:%M %p')}"):
|
364 |
+
st.write(f"⏱️ Duration: {upcoming['duration']} minutes")
|
365 |
+
time_until = upcoming['start_time'] - datetime.utcnow()
|
366 |
+
st.write(f"🕒 Starts in: {time_until.seconds // 3600}h {(time_until.seconds % 3600) // 60}m")
|
367 |
+
else:
|
368 |
+
st.info("📝 No upcoming chat sessions scheduled")
|
369 |
+
|
370 |
+
# Check for active session
|
371 |
+
active_session = live_chat_sessions_collection.find_one({
|
372 |
+
"session_id": session['session_id'],
|
373 |
+
"status": "active"
|
374 |
+
})
|
375 |
+
|
376 |
+
# if active_session:
|
377 |
+
# st.session_state.chat_active = True
|
378 |
+
# st.session_state.chat_end_time = active_session['start_time'] + timedelta(minutes=active_session['duration'])
|
379 |
+
if active_session and not st.session_state.get('chat_active', False):
|
380 |
+
st.session_state.chat_active = True
|
381 |
+
st.session_state.chat_end_time = active_session['start_time'] + timedelta(minutes=active_session['duration'])
|
382 |
+
st.session_state.original_duration = active_session['duration']
|
383 |
+
|
384 |
+
if st.session_state.get('chat_active', False):
|
385 |
+
st.markdown("<div style='margin-top: 20px;'></div>", unsafe_allow_html=True)
|
386 |
+
st.markdown("##### 🔴 Live Chat Section")
|
387 |
+
|
388 |
+
if hasattr(st.session_state, 'chat_end_time'):
|
389 |
+
reamining_time = st.session_state.chat_end_time - datetime.utcnow()
|
390 |
+
if reamining_time.total_seconds() > 0:
|
391 |
+
display_timer(st.session_state.chat_end_time)
|
392 |
+
active_session = live_chat_sessions_collection.find_one({
|
393 |
+
"session_id": session['session_id'],
|
394 |
+
"status": "active"
|
395 |
+
})
|
396 |
+
if active_session:
|
397 |
+
faculty_id = active_session['faculty_id']
|
398 |
+
display_chat_interface(session, student_id, course_id, faculty_id)
|
399 |
+
else:
|
400 |
+
st.error("❌ No active session found.")
|
401 |
+
st.session_state.chat_active = False
|
402 |
+
st.session_state.chat_end_time = None
|
403 |
+
else:
|
404 |
+
st.session_state.chat_active = False
|
405 |
+
st.session_state.chat_end_time = None
|
406 |
+
live_chat_sessions_collection.update_one(
|
407 |
+
{"session_id": session['session_id'], "status": "active"},
|
408 |
+
{"$set": {"status": "completed", "end_time": datetime.utcnow()}}
|
409 |
+
)
|
410 |
+
st.rerun()
|
411 |
+
|
412 |
+
def display_chat_interface(session, user_id, course_id, faculty_id):
|
413 |
+
"""Display the actual chat interface with messages"""
|
414 |
+
# Display chat messages
|
415 |
+
# Initialize 'messages' in session_state if it doesn't exist
|
416 |
+
if 'messages' not in st.session_state:
|
417 |
+
st.session_state.messages = []
|
418 |
+
|
419 |
+
# Chat input
|
420 |
+
if prompt := st.chat_input("Ask Questions about the Session"):
|
421 |
+
# Get session context
|
422 |
+
context = ""
|
423 |
+
context = get_session_context(session, session['session_id'], course_id)
|
424 |
+
|
425 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
426 |
+
|
427 |
+
# Display user message
|
428 |
+
with st.chat_message("user"):
|
429 |
+
st.markdown(prompt)
|
430 |
+
|
431 |
+
try:
|
432 |
+
# Generate AI response
|
433 |
+
context_prompt = f"""
|
434 |
+
You are an intelligent teaching assistant participating in a live class discussion.
|
435 |
+
|
436 |
+
Session Context:
|
437 |
+
{context}
|
438 |
+
|
439 |
+
Current Question by the Student: {prompt}
|
440 |
+
|
441 |
+
Instructions:
|
442 |
+
1. Provide clear, concise responses that relate to the session's key concepts and learning outcomes
|
443 |
+
2. Encourage critical thinking and discussion
|
444 |
+
3. Keep responses focused and relevant to the current topic
|
445 |
+
4. If students seem confused, provide clarifying examples
|
446 |
+
|
447 |
+
Please provide an appropriate response for this live classroom discussion.
|
448 |
+
"""
|
449 |
+
|
450 |
+
response = model.generate_content(context_prompt)
|
451 |
+
assistant_response = response.text
|
452 |
+
|
453 |
+
# Display assistant response
|
454 |
+
with st.chat_message("assistant"):
|
455 |
+
st.markdown(assistant_response)
|
456 |
+
|
457 |
+
# Save chat message
|
458 |
+
chat_message = {
|
459 |
+
"session_id": session['session_id'],
|
460 |
+
"timestamp": datetime.utcnow(),
|
461 |
+
"user_id": user_id,
|
462 |
+
"user_type": st.session_state.user_type,
|
463 |
+
"message": prompt,
|
464 |
+
"response": assistant_response
|
465 |
+
}
|
466 |
+
st.session_state.messages.append(chat_message)
|
467 |
+
# chat_messages_collection.insert_one(chat_message)
|
468 |
+
# Update database
|
469 |
+
try:
|
470 |
+
current_session = live_chat_sessions_collection.find_one({"session_id": session['session_id'], "status": "active"})
|
471 |
+
live_chat_sessions_collection.update_one(
|
472 |
+
{
|
473 |
+
"session_id": session['session_id'],
|
474 |
+
"course_id": course_id,
|
475 |
+
"faculty_id": faculty_id,
|
476 |
+
"start_time": current_session['start_time'],
|
477 |
+
"duration": current_session['duration'],
|
478 |
+
"status": current_session['status'],
|
479 |
+
"chats.user_id": user_id
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"$push": {
|
483 |
+
"chats.$.messages": {
|
484 |
+
"prompt": prompt,
|
485 |
+
"response": assistant_response,
|
486 |
+
"timestamp": datetime.utcnow()
|
487 |
+
}
|
488 |
+
}
|
489 |
+
}
|
490 |
+
)
|
491 |
+
|
492 |
+
# If no existing chat object for the user, create a new one
|
493 |
+
if live_chat_sessions_collection.find_one({
|
494 |
+
"session_id": session['session_id'],
|
495 |
+
"course_id": course_id,
|
496 |
+
"faculty_id": faculty_id,
|
497 |
+
"start_time": current_session['start_time'],
|
498 |
+
"duration": current_session['duration'],
|
499 |
+
"status": current_session['status'],
|
500 |
+
"chats.user_id": user_id
|
501 |
+
}) is None:
|
502 |
+
live_chat_sessions_collection.update_one(
|
503 |
+
{
|
504 |
+
"session_id": session['session_id'],
|
505 |
+
"course_id": course_id,
|
506 |
+
"faculty_id": faculty_id,
|
507 |
+
"start_time": current_session['start_time'],
|
508 |
+
"duration": current_session['duration'],
|
509 |
+
"status": current_session['status']
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"$push": {
|
513 |
+
"chats": {
|
514 |
+
"user_id": user_id,
|
515 |
+
"messages": [
|
516 |
+
{
|
517 |
+
"prompt": prompt,
|
518 |
+
"response": assistant_response,
|
519 |
+
"timestamp": datetime.utcnow()
|
520 |
+
}
|
521 |
+
]
|
522 |
+
}
|
523 |
+
}
|
524 |
+
},
|
525 |
+
upsert=True
|
526 |
+
)
|
527 |
+
except Exception as db_error:
|
528 |
+
st.error(f"Error saving chat history: {str(db_error)}")
|
529 |
+
except Exception as e:
|
530 |
+
st.error(f"Error processing message: {str(e)}")
|
pre_class_analytics3.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import json
|
3 |
+
from bson import ObjectId
|
4 |
+
import typing_extensions as typing
|
5 |
+
import google.generativeai as genai
|
6 |
+
from typing import List, Dict, Any
|
7 |
+
import numpy as np
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
import os
|
12 |
+
import pymongo
|
13 |
+
from pymongo import MongoClient
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
GEMINI_API_KEY = os.getenv("GEMINI_KEY")
|
17 |
+
|
18 |
+
class NovaScholarAnalytics:
|
19 |
+
def __init__(self, model_name: str = "gemini-1.5-flash"):
|
20 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
21 |
+
self.model = genai.GenerativeModel(model_name)
|
22 |
+
|
23 |
+
def _preprocess_chat_histories(self, chat_histories: List[Dict]) -> List[Dict]:
|
24 |
+
# Code 2:
|
25 |
+
"""Preprocess chat histories to focus on relevant information."""
|
26 |
+
processed = []
|
27 |
+
|
28 |
+
for chat in chat_histories:
|
29 |
+
# Convert ObjectId to string if it's an ObjectId
|
30 |
+
user_id = str(chat["user_id"]["$oid"]) if isinstance(chat["user_id"], dict) and "$oid" in chat["user_id"] else str(chat["user_id"])
|
31 |
+
|
32 |
+
try:
|
33 |
+
processed_chat = {
|
34 |
+
"user_id": user_id,
|
35 |
+
"messages": [
|
36 |
+
{
|
37 |
+
"prompt": msg["prompt"],
|
38 |
+
"response": msg["response"]
|
39 |
+
}
|
40 |
+
for msg in chat["messages"]
|
41 |
+
]
|
42 |
+
}
|
43 |
+
processed.append(processed_chat)
|
44 |
+
print(f"Successfully processed chat for user: {user_id}")
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error processing chat for user: {user_id}")
|
47 |
+
print(f"Error details: {str(e)}")
|
48 |
+
continue
|
49 |
+
|
50 |
+
return processed
|
51 |
+
|
52 |
+
def _create_analytics_prompt(self, chat_histories: List[Dict], all_topics: List[str]) -> str:
|
53 |
+
"""Creates a structured prompt for Gemini to analyze chat histories."""
|
54 |
+
return f"""Analyze the provided student chat histories for a university course and generate concise, actionable analytics WITH EVIDENCE.
|
55 |
+
|
56 |
+
Context:
|
57 |
+
- Chat histories: {json.dumps(chat_histories, indent=2)}
|
58 |
+
- These are pre-class interactions between students and an AI tutor
|
59 |
+
- Topics covered: {', '.join(all_topics)}
|
60 |
+
|
61 |
+
Your task is to provide analytics with supporting evidence from the chat histories.
|
62 |
+
|
63 |
+
Output Format (strictly follow this JSON structure):
|
64 |
+
{{
|
65 |
+
"topic_wise_insights": [
|
66 |
+
{{
|
67 |
+
"topic": "<string>",
|
68 |
+
"struggling_percentage": <number between 0 and 1>,
|
69 |
+
"evidence": {{
|
70 |
+
"calculation": "Explain how struggling_percentage was calculated",
|
71 |
+
"supporting_messages": [
|
72 |
+
{{
|
73 |
+
"user_id": "<string>",
|
74 |
+
"message": "<string>",
|
75 |
+
"reasoning": "Why this message indicates struggling"
|
76 |
+
}}
|
77 |
+
]
|
78 |
+
}},
|
79 |
+
"key_issues": ["<string>"],
|
80 |
+
"key_misconceptions": ["<string>"],
|
81 |
+
"evidence_for_issues": [
|
82 |
+
{{
|
83 |
+
"issue": "<string>",
|
84 |
+
"supporting_messages": [
|
85 |
+
{{
|
86 |
+
"user_id": "<string>",
|
87 |
+
"message": "<string>"
|
88 |
+
}}
|
89 |
+
]
|
90 |
+
}}
|
91 |
+
]
|
92 |
+
}}
|
93 |
+
],
|
94 |
+
"ai_recommended_actions": [
|
95 |
+
{{
|
96 |
+
"action": "<string>",
|
97 |
+
"priority": "high|medium|low",
|
98 |
+
"reasoning": "<string>",
|
99 |
+
"evidence": {{
|
100 |
+
"supporting_messages": [
|
101 |
+
{{
|
102 |
+
"user_id": "<string>",
|
103 |
+
"message": "<string>",
|
104 |
+
"relevance": "Why this message supports the recommendation"
|
105 |
+
}}
|
106 |
+
],
|
107 |
+
"pattern_description": "Description of the pattern observed in chat histories"
|
108 |
+
}},
|
109 |
+
"expected_outcome": "<string>"
|
110 |
+
}}
|
111 |
+
],
|
112 |
+
"student_analytics": [
|
113 |
+
{{
|
114 |
+
"student_id": "<string>",
|
115 |
+
"engagement_metrics": {{
|
116 |
+
"participation_level": <number between 0 and 1>,
|
117 |
+
"concept_understanding": "strong|moderate|needs_improvement",
|
118 |
+
"question_quality": "advanced|intermediate|basic"
|
119 |
+
}},
|
120 |
+
"evidence": {{
|
121 |
+
"participation_calculation": "Explain how participation_level was calculated",
|
122 |
+
"understanding_evidence": [
|
123 |
+
{{
|
124 |
+
"message": "<string>",
|
125 |
+
"analysis": "Why this indicates their understanding level"
|
126 |
+
}}
|
127 |
+
],
|
128 |
+
"question_quality_evidence": [
|
129 |
+
{{
|
130 |
+
"question": "<string>",
|
131 |
+
"analysis": "Why this question is classified at this level"
|
132 |
+
}}
|
133 |
+
]
|
134 |
+
}},
|
135 |
+
"struggling_topics": ["<string>"],
|
136 |
+
"personalized_recommendation": "<string>"
|
137 |
+
}}
|
138 |
+
]
|
139 |
+
}}
|
140 |
+
|
141 |
+
Guidelines for Analysis:
|
142 |
+
1. For every insight, recommendation, or metric, provide specific evidence from the chat histories
|
143 |
+
2. Explain calculations (e.g., how struggling_percentage was derived)
|
144 |
+
3. Include relevant message excerpts that support each conclusion
|
145 |
+
4. For recommendations, show the pattern of student interactions that led to that recommendation
|
146 |
+
5. When analyzing question quality or understanding, provide reasoning for the classification
|
147 |
+
|
148 |
+
The response must adhere strictly to the above JSON structure, with all fields populated appropriately."""
|
149 |
+
|
150 |
+
def _validate_analytics_with_evidence(self, initial_analytics: Dict) -> Dict:
|
151 |
+
"""Validate the initial analytics by checking evidence."""
|
152 |
+
validation_prompt = f"""Review and validate the following analytics based on the provided evidence.
|
153 |
+
|
154 |
+
Analytics to validate: {json.dumps(initial_analytics, indent=2)}
|
155 |
+
|
156 |
+
For each section:
|
157 |
+
1. Verify if the evidence supports the conclusions
|
158 |
+
2. Check if calculations (percentages, metrics) are justified by the data
|
159 |
+
3. Validate if recommendations are supported by patterns in the chat history
|
160 |
+
|
161 |
+
Return a JSON with the same structure, but only include insights/recommendations that have strong supporting evidence.
|
162 |
+
For any removed items, include them in a separate "insufficient_evidence" section with explanation."""
|
163 |
+
|
164 |
+
try:
|
165 |
+
validation_response = self.model.generate_content(
|
166 |
+
validation_prompt,
|
167 |
+
generation_config=genai.GenerationConfig(
|
168 |
+
response_mime_type="application/json",
|
169 |
+
temperature=0.1
|
170 |
+
)
|
171 |
+
)
|
172 |
+
|
173 |
+
validated_analytics = json.loads(validation_response.text)
|
174 |
+
return validated_analytics
|
175 |
+
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Error in validation: {str(e)}")
|
178 |
+
return initial_analytics
|
179 |
+
|
180 |
+
def _enrich_analytics(self, analytics: Dict) -> Dict:
|
181 |
+
"""Add derived insights and metrics to the validated analytics."""
|
182 |
+
try:
|
183 |
+
# Calculate class distribution
|
184 |
+
total_students = len(analytics.get("student_insights", []))
|
185 |
+
performance_distribution = defaultdict(int)
|
186 |
+
|
187 |
+
for student in analytics.get("student_insights", []):
|
188 |
+
metrics = student.get("engagement_metrics", {})
|
189 |
+
understanding = metrics.get("concept_understanding", "moderate")
|
190 |
+
|
191 |
+
if understanding == "strong":
|
192 |
+
performance_distribution["high_performers"] += 1
|
193 |
+
elif understanding == "needs_improvement":
|
194 |
+
performance_distribution["at_risk"] += 1
|
195 |
+
else:
|
196 |
+
performance_distribution["average_performers"] += 1
|
197 |
+
|
198 |
+
# Convert to percentages
|
199 |
+
class_distribution = {
|
200 |
+
level: count/total_students if total_students > 0 else 0
|
201 |
+
for level, count in performance_distribution.items()
|
202 |
+
}
|
203 |
+
|
204 |
+
# Calculate overall engagement
|
205 |
+
engagement_sum = sum(
|
206 |
+
student.get("engagement_metrics", {}).get("participation_level", 0)
|
207 |
+
for student in analytics.get("student_insights", [])
|
208 |
+
)
|
209 |
+
overall_engagement = engagement_sum / total_students if total_students > 0 else 0
|
210 |
+
|
211 |
+
# Identify critical topics (those with high struggling percentage)
|
212 |
+
critical_topics = [
|
213 |
+
topic["topic"]
|
214 |
+
for topic in analytics.get("topic_wise_insights", [])
|
215 |
+
if topic.get("struggling_percentage", 0) > 0.7 # 70% threshold
|
216 |
+
]
|
217 |
+
|
218 |
+
# Identify students needing intervention
|
219 |
+
immediate_attention = []
|
220 |
+
monitoring_required = []
|
221 |
+
|
222 |
+
for student in analytics.get("student_insights", []):
|
223 |
+
student_id = student.get("student_id")
|
224 |
+
metrics = student.get("engagement_metrics", {})
|
225 |
+
|
226 |
+
# Check for immediate attention needed
|
227 |
+
if (metrics.get("concept_understanding") == "needs_improvement" or
|
228 |
+
metrics.get("participation_level", 0) < 0.3 or # Less than 30% participation
|
229 |
+
len(student.get("struggling_topics", [])) > 2): # Struggling with more than 2 topics
|
230 |
+
immediate_attention.append(student_id)
|
231 |
+
# Check for monitoring
|
232 |
+
elif (metrics.get("concept_understanding") == "moderate" or
|
233 |
+
metrics.get("participation_level", 0) < 0.5): # Less than 50% participation
|
234 |
+
monitoring_required.append(student_id)
|
235 |
+
|
236 |
+
# Add enriched data to analytics
|
237 |
+
analytics["course_health"] = {
|
238 |
+
"overall_engagement": overall_engagement,
|
239 |
+
"critical_topics": critical_topics,
|
240 |
+
"class_distribution": class_distribution
|
241 |
+
}
|
242 |
+
|
243 |
+
analytics["intervention_metrics"] = {
|
244 |
+
"immediate_attention_needed": immediate_attention,
|
245 |
+
"monitoring_required": monitoring_required
|
246 |
+
}
|
247 |
+
|
248 |
+
# Add evidence for enriched metrics
|
249 |
+
analytics["course_health"]["evidence"] = {
|
250 |
+
"engagement_calculation": f"Calculated from average participation level of {total_students} students",
|
251 |
+
"critical_topics_criteria": "Topics where over 70% of students are struggling",
|
252 |
+
"distribution_calculation": "Based on concept understanding levels from student metrics"
|
253 |
+
}
|
254 |
+
|
255 |
+
analytics["intervention_metrics"]["evidence"] = {
|
256 |
+
"immediate_attention_criteria": "Students with low understanding, participation < 30%, or >2 struggling topics",
|
257 |
+
"monitoring_criteria": "Students with moderate understanding or participation < 50%"
|
258 |
+
}
|
259 |
+
|
260 |
+
return analytics
|
261 |
+
|
262 |
+
except Exception as e:
|
263 |
+
print(f"Error enriching analytics: {str(e)}")
|
264 |
+
return analytics # Return original analytics if enrichment fails
|
265 |
+
|
266 |
+
def generate_analytics(self, chat_histories: List[Dict], all_topics: List[str]) -> Dict:
|
267 |
+
"""Main method to generate analytics with evidence-based validation."""
|
268 |
+
try:
|
269 |
+
if not chat_histories or not all_topics:
|
270 |
+
print("Missing required input data")
|
271 |
+
return self._fallback_analytics()
|
272 |
+
|
273 |
+
try:
|
274 |
+
processed_histories = self._preprocess_chat_histories(chat_histories)
|
275 |
+
print("Successfully preprocessed chat histories")
|
276 |
+
except Exception as preprocess_error:
|
277 |
+
print(f"Error in preprocessing: {str(preprocess_error)}")
|
278 |
+
return self._fallback_analytics()
|
279 |
+
|
280 |
+
try:
|
281 |
+
prompt = self._create_analytics_prompt(processed_histories, all_topics)
|
282 |
+
print("Successfully created prompt")
|
283 |
+
print("Prompt preview:", prompt[:200] + "...") # Print first 200 chars
|
284 |
+
except Exception as prompt_error:
|
285 |
+
print(f"Error in prompt creation: {str(prompt_error)}")
|
286 |
+
return self._fallback_analytics()
|
287 |
+
|
288 |
+
# Generate initial analytics with evidence
|
289 |
+
# prompt = self._create_analytics_prompt(chat_histories, all_topics)
|
290 |
+
response = self.model.generate_content(
|
291 |
+
prompt,
|
292 |
+
generation_config=genai.GenerationConfig(
|
293 |
+
response_mime_type="application/json",
|
294 |
+
temperature=0.15
|
295 |
+
)
|
296 |
+
)
|
297 |
+
print(response.text)
|
298 |
+
|
299 |
+
if not response.text:
|
300 |
+
print("Empty response from Gemini")
|
301 |
+
return self._fallback_analytics()
|
302 |
+
|
303 |
+
# Parse initial analytics
|
304 |
+
# initial_analytics = self._process_gemini_response(response.text)
|
305 |
+
initial_analytics2 = json.loads(response.text)
|
306 |
+
print("Initial analytics:", initial_analytics2)
|
307 |
+
# print("Initial analytics type:", type(initial_analytics2))
|
308 |
+
# print("Moving to validation...")
|
309 |
+
|
310 |
+
# Validate analytics using evidence
|
311 |
+
validated_analytics = self._validate_analytics_with_evidence(initial_analytics2)
|
312 |
+
|
313 |
+
# # Enrich with additional metrics
|
314 |
+
final_analytics = self._enrich_analytics(validated_analytics)
|
315 |
+
|
316 |
+
return final_analytics
|
317 |
+
|
318 |
+
except Exception as e:
|
319 |
+
print(f"Error generating analytics: {str(e)}")
|
320 |
+
return self._fallback_analytics()
|
321 |
+
|
322 |
+
def _fallback_analytics(self) -> Dict:
|
323 |
+
"""Provide fallback analytics with explanation."""
|
324 |
+
return {
|
325 |
+
"topic_insights": [],
|
326 |
+
"student_insights": [],
|
327 |
+
"recommended_actions": [
|
328 |
+
{
|
329 |
+
"action": "Review analytics generation process",
|
330 |
+
"priority": "high",
|
331 |
+
"target_group": "system_administrators",
|
332 |
+
"reasoning": "Analytics generation failed",
|
333 |
+
"expected_impact": "Restore analytics functionality",
|
334 |
+
"evidence": {
|
335 |
+
"error": "Analytics generation failed to complete"
|
336 |
+
}
|
337 |
+
}
|
338 |
+
],
|
339 |
+
"course_health": {
|
340 |
+
"overall_engagement": 0,
|
341 |
+
"critical_topics": [],
|
342 |
+
"class_distribution": {
|
343 |
+
"high_performers": 0,
|
344 |
+
"average_performers": 0,
|
345 |
+
"at_risk": 0
|
346 |
+
}
|
347 |
+
},
|
348 |
+
"intervention_metrics": {
|
349 |
+
"immediate_attention_needed": [],
|
350 |
+
"monitoring_required": []
|
351 |
+
}
|
352 |
+
}
|
353 |
+
def _process_gemini_response(self, response: str) -> Dict:
|
354 |
+
print("Entered here")
|
355 |
+
try:
|
356 |
+
analytics = json.loads(response, object_hook=json_serializer)
|
357 |
+
if not isinstance(analytics, dict):
|
358 |
+
raise ValueError("Invalid response format")
|
359 |
+
return analytics
|
360 |
+
except Exception as e:
|
361 |
+
print(f"Error processing Gemini response: {str(e)}")
|
362 |
+
return self._fallback_analytics()
|
363 |
+
|
364 |
+
load_dotenv()
|
365 |
+
MONGODB_URI = os.getenv("MONGO_URI")
|
366 |
+
from file_upload_vectorize import model
|
367 |
+
import streamlit as st
|
368 |
+
|
369 |
+
def extract_topics_from_materials(session_id):
|
370 |
+
"""Extract topics from pre-class materials"""
|
371 |
+
materials = resources_collection.find({"session_id": session_id})
|
372 |
+
texts = ""
|
373 |
+
if materials:
|
374 |
+
for material in materials:
|
375 |
+
if 'text_content' in material:
|
376 |
+
text = material['text_content']
|
377 |
+
texts += text + "\n"
|
378 |
+
else:
|
379 |
+
st.warning("No text content found in the material.")
|
380 |
+
return
|
381 |
+
else:
|
382 |
+
st.error("No pre-class materials found for this session.")
|
383 |
+
return
|
384 |
+
|
385 |
+
if texts:
|
386 |
+
context_prompt = f"""
|
387 |
+
Task: Extract Comprehensive Topics in a List Format
|
388 |
+
You are tasked with analyzing the provided text content and extracting a detailed, flat list of topics.
|
389 |
+
|
390 |
+
Instructions:
|
391 |
+
Identify All Topics: Extract a comprehensive list of all topics, subtopics, and indirect topics present in the provided text content. This list should include:
|
392 |
+
|
393 |
+
Overarching themes
|
394 |
+
Main topics
|
395 |
+
Subtopics and their sub-subtopics
|
396 |
+
Indirectly related topics
|
397 |
+
Flat List Format: Provide a flat list where each item is a topic. Ensure topics at all levels (overarching, main, sub, sub-sub, indirect) are represented as individual entries in the list.
|
398 |
+
|
399 |
+
Be Exhaustive: Ensure the response captures every topic, subtopic, and indirectly related concept comprehensively.
|
400 |
+
|
401 |
+
Output Requirements:
|
402 |
+
Use this structure:
|
403 |
+
{{
|
404 |
+
"topics": [
|
405 |
+
"Topic 1",
|
406 |
+
"Topic 2",
|
407 |
+
"Topic 3",
|
408 |
+
...
|
409 |
+
]
|
410 |
+
}}
|
411 |
+
Do Not Include: Do not include backticks, hierarchical structures, or the word 'json' in your response.
|
412 |
+
|
413 |
+
Content to Analyze:
|
414 |
+
{texts}
|
415 |
+
"""
|
416 |
+
try:
|
417 |
+
# response = model.generate_content(context_prompt, generation_config=genai.GenerationConfig(response_mime_type="application/json", response_schema=list[Topics]))
|
418 |
+
response = model.generate_content(context_prompt, generation_config=genai.GenerationConfig(temperature=0.3))
|
419 |
+
if not response or not response.text:
|
420 |
+
st.error("Error extracting topics from materials.")
|
421 |
+
return
|
422 |
+
|
423 |
+
topics = response.text
|
424 |
+
return topics
|
425 |
+
except Exception as e:
|
426 |
+
st.error(f"Error extracting topics: {str(e)}")
|
427 |
+
return None
|
428 |
+
else:
|
429 |
+
st.error("No text content found in the pre-class materials.")
|
430 |
+
return None
|
431 |
+
|
432 |
+
|
433 |
+
def get_chat_history(user_id, session_id):
|
434 |
+
query = {
|
435 |
+
"user_id": ObjectId(user_id),
|
436 |
+
"session_id": session_id,
|
437 |
+
"timestamp": {"$lte": datetime.utcnow()}
|
438 |
+
}
|
439 |
+
result = chat_history_collection.find(query)
|
440 |
+
return list(result)
|
441 |
+
|
442 |
+
def json_serializer(obj):
|
443 |
+
if isinstance(obj, ObjectId):
|
444 |
+
return str(obj)
|
445 |
+
raise TypeError(f"Type {type(obj)} not serializable")
|
446 |
+
|
447 |
+
if __name__ == "__main__":
|
448 |
+
client = MongoClient(MONGODB_URI)
|
449 |
+
db = client["novascholar_db"]
|
450 |
+
chat_history_collection = db["chat_history"]
|
451 |
+
resources_collection = db["resources"]
|
452 |
+
session_id = "S104"
|
453 |
+
# Connect to MongoDB
|
454 |
+
user_ids = chat_history_collection.distinct("user_id", {"session_id": session_id})
|
455 |
+
# Debug print 2: Check user_ids
|
456 |
+
print("Found user_ids:", user_ids)
|
457 |
+
|
458 |
+
all_chat_histories = []
|
459 |
+
for user_id in user_ids:
|
460 |
+
result = get_chat_history(user_id, session_id)
|
461 |
+
# Debug print 3: Check each chat history result
|
462 |
+
print(f"Chat history for user {user_id}:", "Found" if result else "Not found")
|
463 |
+
if result:
|
464 |
+
for record in result:
|
465 |
+
chat_history = {
|
466 |
+
"user_id": record["user_id"], # Convert ObjectId to string
|
467 |
+
"session_id": record["session_id"],
|
468 |
+
"messages": record["messages"]
|
469 |
+
}
|
470 |
+
all_chat_histories.append(chat_history)
|
471 |
+
|
472 |
+
print(all_chat_histories)
|
473 |
+
|
474 |
+
# Export all chat histories to a JSON file
|
475 |
+
# Path: sample_files/chat_histories.json
|
476 |
+
# with open("sample_files/all_chat_histories3.json", "w") as file:
|
477 |
+
# json.dump(all_chat_histories, file, indent=2)
|
478 |
+
|
479 |
+
# Debug print 4: Check chat histories
|
480 |
+
print("Total chat histories collected:", len(all_chat_histories))
|
481 |
+
|
482 |
+
# Extract topics with debug print
|
483 |
+
# topics = extract_topics_from_materials(session_id)
|
484 |
+
# # Export extracted topics to a JSON file
|
485 |
+
# with open("sample_files/extracted_topics.json", "w") as file:
|
486 |
+
# json.dump(topics, file, indent=2)
|
487 |
+
|
488 |
+
# Load extracted topics from JSON file
|
489 |
+
with open("sample_files/extracted_topics.json", "r") as file:
|
490 |
+
topics = json.load(file)
|
491 |
+
# Debug print 5: Check topics
|
492 |
+
print("Extracted topics:", topics)
|
493 |
+
|
494 |
+
# Generate analytics
|
495 |
+
|
496 |
+
analytics_generator = NovaScholarAnalytics()
|
497 |
+
analytics = analytics_generator.generate_analytics(all_chat_histories, topics)
|
498 |
+
# Debug print 6: Check generated analytics
|
499 |
+
print("Generated Analytics:", analytics)
|
session_page.py
CHANGED
@@ -30,6 +30,8 @@ import numpy as np
|
|
30 |
import re
|
31 |
from analytics import derive_analytics, create_embeddings, cosine_similarity
|
32 |
from bs4 import BeautifulSoup
|
|
|
|
|
33 |
|
34 |
load_dotenv()
|
35 |
MONGO_URI = os.getenv('MONGO_URI')
|
@@ -39,6 +41,9 @@ client = MongoClient(MONGO_URI)
|
|
39 |
db = client["novascholar_db"]
|
40 |
polls_collection = db["polls"]
|
41 |
subjective_tests_collection = db["subjective_tests"]
|
|
|
|
|
|
|
42 |
synoptic_store_collection = db["synoptic_store"]
|
43 |
|
44 |
def get_current_user():
|
@@ -132,66 +137,6 @@ def get_current_user():
|
|
132 |
# user = get_current_user()
|
133 |
|
134 |
def display_preclass_content(session, student_id, course_id):
|
135 |
-
# """Display pre-class materials for a session"""
|
136 |
-
# st.subheader("Pre-class Materials")
|
137 |
-
# print("Session ID is: ", session['session_id'])
|
138 |
-
# # Display pre-class materials
|
139 |
-
# materials = resources_collection.find({"session_id": session['session_id']})
|
140 |
-
# for material in materials:
|
141 |
-
# with st.expander(f"{material['file_name']} ({material['material_type'].upper()})"):
|
142 |
-
# file_type = material.get('file_type', 'unknown')
|
143 |
-
# if file_type == 'application/pdf':
|
144 |
-
# st.markdown(f"📑 [Open PDF Document]({material['file_name']})")
|
145 |
-
# if st.button("View PDF", key=f"view_pdf_{material['_id']}"):
|
146 |
-
# st.text_area("PDF Content", material['text_content'], height=300)
|
147 |
-
# if st.button("Download PDF", key=f"download_pdf_{material['_id']}"):
|
148 |
-
# st.download_button(
|
149 |
-
# label="Download PDF",
|
150 |
-
# data=material['file_content'],
|
151 |
-
# file_name=material['file_name'],
|
152 |
-
# mime='application/pdf'
|
153 |
-
# )
|
154 |
-
# if st.button("Mark PDF as Read", key=f"pdf_{material['_id']}"):
|
155 |
-
# create_notification("PDF marked as read!", "success")
|
156 |
-
# elif file_type == 'text/plain':
|
157 |
-
# st.markdown(f"📄 [Open Text Document]({material['file_name']})")
|
158 |
-
# if st.button("View Text", key=f"view_text_{material['_id']}"):
|
159 |
-
# st.text_area("Text Content", material['text_content'], height=300)
|
160 |
-
# if st.button("Download Text", key=f"download_text_{material['_id']}"):
|
161 |
-
# st.download_button(
|
162 |
-
# label="Download Text",
|
163 |
-
# data=material['file_content'],
|
164 |
-
# file_name=material['file_name'],
|
165 |
-
# mime='text/plain'
|
166 |
-
# )
|
167 |
-
# if st.button("Mark Text as Read", key=f"text_{material['_id']}"):
|
168 |
-
# create_notification("Text marked as read!", "success")
|
169 |
-
# elif file_type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document':
|
170 |
-
# st.markdown(f"📄 [Open Word Document]({material['file_name']})")
|
171 |
-
# if st.button("View Word", key=f"view_word_{material['_id']}"):
|
172 |
-
# st.text_area("Word Content", material['text_content'], height=300)
|
173 |
-
# if st.button("Download Word", key=f"download_word_{material['_id']}"):
|
174 |
-
# st.download_button(
|
175 |
-
# label="Download Word",
|
176 |
-
# data=material['file_content'],
|
177 |
-
# file_name=material['file_name'],
|
178 |
-
# mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
|
179 |
-
# )
|
180 |
-
# if st.button("Mark Word as Read", key=f"word_{material['_id']}"):
|
181 |
-
# create_notification("Word document marked as read!", "success")
|
182 |
-
# elif file_type == 'application/vnd.openxmlformats-officedocument.presentationml.presentation':
|
183 |
-
# st.markdown(f"📊 [Open PowerPoint Presentation]({material['file_name']})")
|
184 |
-
# if st.button("View PowerPoint", key=f"view_pptx_{material['_id']}"):
|
185 |
-
# st.text_area("PowerPoint Content", material['text_content'], height=300)
|
186 |
-
# if st.button("Download PowerPoint", key=f"download_pptx_{material['_id']}"):
|
187 |
-
# st.download_button(
|
188 |
-
# label="Download PowerPoint",
|
189 |
-
# data=material['file_content'],
|
190 |
-
# file_name=material['file_name'],
|
191 |
-
# mime='application/vnd.openxmlformats-officedocument.presentationml.presentation'
|
192 |
-
# )
|
193 |
-
# if st.button("Mark PowerPoint as Read", key=f"pptx_{material['_id']}"):
|
194 |
-
# create_notification("PowerPoint presentation marked as read!", "success")
|
195 |
"""Display pre-class materials for a session including external resources"""
|
196 |
st.subheader("Pre-class Materials")
|
197 |
print("Session ID is: ", session['session_id'])
|
@@ -203,7 +148,7 @@ def display_preclass_content(session, student_id, course_id):
|
|
203 |
file_type = material.get('file_type', 'unknown')
|
204 |
|
205 |
# Handle external resources
|
206 |
-
if file_type == 'external':
|
207 |
with st.expander(f"📌 {material['file_name']}"):
|
208 |
st.markdown(f"Source: [{material['source_url']}]({material['source_url']})")
|
209 |
|
@@ -596,6 +541,247 @@ def display_preclass_content(session, student_id, course_id):
|
|
596 |
# except Exception as db_error:
|
597 |
# st.error(f"Error saving submission: {str(db_error)}")
|
598 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
|
600 |
def extract_youtube_id(url):
|
601 |
"""Extract YouTube video ID from URL"""
|
@@ -611,8 +797,75 @@ def extract_youtube_id(url):
|
|
611 |
return None
|
612 |
return None
|
613 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
614 |
|
615 |
-
def display_in_class_content(session, user_type):
|
616 |
# """Display in-class activities and interactions"""
|
617 |
"""Display in-class activities and interactions"""
|
618 |
st.header("In-class Activities")
|
@@ -625,6 +878,11 @@ def display_in_class_content(session, user_type):
|
|
625 |
live_polls.display_faculty_interface(session['session_id'])
|
626 |
else:
|
627 |
live_polls.display_student_interface(session['session_id'])
|
|
|
|
|
|
|
|
|
|
|
628 |
|
629 |
def generate_random_assignment_id():
|
630 |
"""Generate a random integer ID for assignments"""
|
@@ -1412,7 +1670,7 @@ def convert_json_to_dict(json_str):
|
|
1412 |
# with open(r'topics.json', 'r') as file:
|
1413 |
# topics = json.load(file)
|
1414 |
|
1415 |
-
def get_preclass_analytics(session):
|
1416 |
# Earlier Code:
|
1417 |
# """Get all user_ids from chat_history collection where session_id matches"""
|
1418 |
# user_ids = chat_history_collection.distinct("user_id", {"session_id": session['session_id']})
|
@@ -1534,11 +1792,16 @@ def get_preclass_analytics(session):
|
|
1534 |
print("Fallback analytics returned") # Debug print 8
|
1535 |
return None
|
1536 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1537 |
return analytics2
|
1538 |
|
1539 |
|
1540 |
-
|
1541 |
-
|
1542 |
# Load Analytics from a JSON file
|
1543 |
# analytics = []
|
1544 |
# with open(r'new_analytics2.json', 'r') as file:
|
@@ -1559,7 +1822,7 @@ def display_preclass_analytics2(session, course_id):
|
|
1559 |
# Initialize or get analytics data from session state
|
1560 |
if 'analytics_data' not in st.session_state:
|
1561 |
# Add debug prints
|
1562 |
-
analytics_data = get_preclass_analytics(session)
|
1563 |
if analytics_data is None:
|
1564 |
st.info("Fetching new analytics data...")
|
1565 |
if analytics_data is None:
|
@@ -1962,173 +2225,7 @@ def display_session_analytics(session, course_id):
|
|
1962 |
# Uploaded on: {material['uploaded_at'].strftime('%Y-%m-%d %H:%M')}
|
1963 |
# """)
|
1964 |
|
1965 |
-
def upload_preclass_materials(session_id, course_id):
|
1966 |
-
"""Upload pre-class materials and manage external resources for a session"""
|
1967 |
-
st.subheader("Pre-class Materials Management")
|
1968 |
-
|
1969 |
-
# Create tabs for different functionalities
|
1970 |
-
upload_tab, external_tab = st.tabs(["Upload Materials", "External Resources"])
|
1971 |
-
|
1972 |
-
with upload_tab:
|
1973 |
-
# Original file upload functionality
|
1974 |
-
uploaded_file = st.file_uploader("Upload Material", type=['txt', 'pdf', 'docx'])
|
1975 |
-
if uploaded_file is not None:
|
1976 |
-
with st.spinner("Processing document..."):
|
1977 |
-
file_name = uploaded_file.name
|
1978 |
-
file_content = extract_text_from_file(uploaded_file)
|
1979 |
-
if file_content:
|
1980 |
-
material_type = st.selectbox("Select Material Type", ["pdf", "docx", "txt"])
|
1981 |
-
if st.button("Upload Material"):
|
1982 |
-
upload_resource(course_id, session_id, file_name, uploaded_file, material_type)
|
1983 |
-
st.success("Material uploaded successfully!")
|
1984 |
-
|
1985 |
-
with external_tab:
|
1986 |
-
# Fetch and display external resources
|
1987 |
-
session_data = courses_collection.find_one(
|
1988 |
-
{"course_id": course_id, "sessions.session_id": session_id},
|
1989 |
-
{"sessions.$": 1}
|
1990 |
-
)
|
1991 |
-
|
1992 |
-
if session_data and session_data.get('sessions'):
|
1993 |
-
session = session_data['sessions'][0]
|
1994 |
-
external = session.get('external_resources', {})
|
1995 |
-
|
1996 |
-
# Display web articles
|
1997 |
-
if 'readings' in external:
|
1998 |
-
st.subheader("Web Articles and Videos")
|
1999 |
-
for reading in external['readings']:
|
2000 |
-
col1, col2 = st.columns([3, 1])
|
2001 |
-
with col1:
|
2002 |
-
st.markdown(f"**{reading['title']}**")
|
2003 |
-
st.markdown(f"Type: {reading['type']} | Est. time: {reading['estimated_read_time']}")
|
2004 |
-
st.markdown(f"URL: [{reading['url']}]({reading['url']})")
|
2005 |
-
with col2:
|
2006 |
-
if st.button("Extract Content", key=f"extract_{reading['url']}"):
|
2007 |
-
with st.spinner("Extracting content..."):
|
2008 |
-
content = extract_external_content(reading['url'], reading['type'])
|
2009 |
-
if content:
|
2010 |
-
resource_id = upload_external_resource(
|
2011 |
-
course_id,
|
2012 |
-
session_id,
|
2013 |
-
reading['title'],
|
2014 |
-
content,
|
2015 |
-
reading['type'].lower(),
|
2016 |
-
reading['url']
|
2017 |
-
)
|
2018 |
-
st.success("Content extracted and stored successfully!")
|
2019 |
-
|
2020 |
-
# Display books
|
2021 |
-
if 'books' in external:
|
2022 |
-
st.subheader("Recommended Books")
|
2023 |
-
for book in external['books']:
|
2024 |
-
st.markdown(f"""
|
2025 |
-
**{book['title']}** by {book['author']}
|
2026 |
-
- ISBN: {book['isbn']}
|
2027 |
-
- Chapters: {book['chapters']}
|
2028 |
-
""")
|
2029 |
-
|
2030 |
-
# Display additional resources
|
2031 |
-
if 'additional_resources' in external:
|
2032 |
-
st.subheader("Additional Resources")
|
2033 |
-
for resource in external['additional_resources']:
|
2034 |
-
st.markdown(f"""
|
2035 |
-
**{resource['title']}** ({resource['type']})
|
2036 |
-
- {resource['description']}
|
2037 |
-
- URL: [{resource['url']}]({resource['url']})
|
2038 |
-
""")
|
2039 |
-
|
2040 |
-
def extract_external_content(url, content_type):
|
2041 |
-
"""Extract content from external resources based on their type"""
|
2042 |
-
try:
|
2043 |
-
if content_type.lower() == 'video' and 'youtube.com' in url:
|
2044 |
-
return extract_youtube_transcript(url)
|
2045 |
-
else:
|
2046 |
-
return extract_web_article(url)
|
2047 |
-
except Exception as e:
|
2048 |
-
st.error(f"Error extracting content: {str(e)}")
|
2049 |
-
return None
|
2050 |
-
|
2051 |
-
def extract_youtube_transcript(url):
|
2052 |
-
"""Extract transcript from YouTube videos"""
|
2053 |
-
try:
|
2054 |
-
# Extract video ID from URL
|
2055 |
-
video_id = url.split('v=')[1].split('&')[0]
|
2056 |
-
|
2057 |
-
# Get transcript
|
2058 |
-
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
2059 |
-
# Combine transcript text
|
2060 |
-
full_text = ' '.join([entry['text'] for entry in transcript])
|
2061 |
-
return full_text
|
2062 |
-
except Exception as e:
|
2063 |
-
st.error(f"Could not extract YouTube transcript: {str(e)}")
|
2064 |
-
return None
|
2065 |
-
|
2066 |
-
def extract_web_article(url):
|
2067 |
-
"""Extract text content from web articles"""
|
2068 |
-
try:
|
2069 |
-
headers = {
|
2070 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
2071 |
-
}
|
2072 |
-
response = requests.get(url, headers=headers)
|
2073 |
-
response.raise_for_status()
|
2074 |
-
|
2075 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
2076 |
-
|
2077 |
-
# Remove unwanted tags
|
2078 |
-
for tag in soup(['script', 'style', 'nav', 'footer', 'header']):
|
2079 |
-
tag.decompose()
|
2080 |
-
|
2081 |
-
# Extract text from paragraphs
|
2082 |
-
paragraphs = soup.find_all('p')
|
2083 |
-
text_content = ' '.join([p.get_text().strip() for p in paragraphs])
|
2084 |
-
|
2085 |
-
return text_content
|
2086 |
-
except Exception as e:
|
2087 |
-
st.error(f"Could not extract web article content: {str(e)}")
|
2088 |
-
return None
|
2089 |
|
2090 |
-
def upload_external_resource(course_id, session_id, title, content, content_type, source_url):
|
2091 |
-
"""Upload extracted external resource content to the database"""
|
2092 |
-
resource_data = {
|
2093 |
-
"_id": ObjectId(),
|
2094 |
-
"course_id": course_id,
|
2095 |
-
"session_id": session_id,
|
2096 |
-
"file_name": f"{title} ({content_type})",
|
2097 |
-
"file_type": "external",
|
2098 |
-
"text_content": content,
|
2099 |
-
"material_type": content_type,
|
2100 |
-
"source_url": source_url,
|
2101 |
-
"uploaded_at": datetime.utcnow()
|
2102 |
-
}
|
2103 |
-
|
2104 |
-
# Check if resource already exists
|
2105 |
-
existing_resource = resources_collection.find_one({
|
2106 |
-
"session_id": session_id,
|
2107 |
-
"source_url": source_url
|
2108 |
-
})
|
2109 |
-
|
2110 |
-
if existing_resource:
|
2111 |
-
return existing_resource["_id"]
|
2112 |
-
|
2113 |
-
# Insert new resource
|
2114 |
-
resources_collection.insert_one(resource_data)
|
2115 |
-
resource_id = resource_data["_id"]
|
2116 |
-
|
2117 |
-
# Update course document
|
2118 |
-
courses_collection.update_one(
|
2119 |
-
{
|
2120 |
-
"course_id": course_id,
|
2121 |
-
"sessions.session_id": session_id
|
2122 |
-
},
|
2123 |
-
{
|
2124 |
-
"$push": {"sessions.$.pre_class.resources": resource_id}
|
2125 |
-
}
|
2126 |
-
)
|
2127 |
-
|
2128 |
-
if content:
|
2129 |
-
create_vector_store(content, resource_id)
|
2130 |
-
|
2131 |
-
return resource_id
|
2132 |
|
2133 |
def display_quiz_tab(student_id, course_id, session_id):
|
2134 |
"""Display quizzes for students"""
|
@@ -2763,6 +2860,8 @@ def display_subjective_test_tab(student_id, course_id, session_id):
|
|
2763 |
print(f"Error in display_subjective_test_tab: {str(e)}", flush=True)
|
2764 |
st.error("An error occurred while loading the tests. Please try again later.")
|
2765 |
|
|
|
|
|
2766 |
def display_subjective_analysis(test_id, student_id, context):
|
2767 |
"""Display subjective test analysis to students and faculty"""
|
2768 |
try:
|
|
|
30 |
import re
|
31 |
from analytics import derive_analytics, create_embeddings, cosine_similarity
|
32 |
from bs4 import BeautifulSoup
|
33 |
+
import streamlit.components.v1 as components
|
34 |
+
from live_chat_feature import display_live_chat_interface
|
35 |
|
36 |
load_dotenv()
|
37 |
MONGO_URI = os.getenv('MONGO_URI')
|
|
|
41 |
db = client["novascholar_db"]
|
42 |
polls_collection = db["polls"]
|
43 |
subjective_tests_collection = db["subjective_tests"]
|
44 |
+
subjective_test_evaluation_collection = db["subjective_test_evaluation"]
|
45 |
+
assignment_evaluation_collection = db["assignment_evaluation"]
|
46 |
+
subjective_tests_collection = db["subjective_tests"]
|
47 |
synoptic_store_collection = db["synoptic_store"]
|
48 |
|
49 |
def get_current_user():
|
|
|
137 |
# user = get_current_user()
|
138 |
|
139 |
def display_preclass_content(session, student_id, course_id):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
"""Display pre-class materials for a session including external resources"""
|
141 |
st.subheader("Pre-class Materials")
|
142 |
print("Session ID is: ", session['session_id'])
|
|
|
148 |
file_type = material.get('file_type', 'unknown')
|
149 |
|
150 |
# Handle external resources
|
151 |
+
if file_type == 'external' or file_type == 'video':
|
152 |
with st.expander(f"📌 {material['file_name']}"):
|
153 |
st.markdown(f"Source: [{material['source_url']}]({material['source_url']})")
|
154 |
|
|
|
541 |
# except Exception as db_error:
|
542 |
# st.error(f"Error saving submission: {str(db_error)}")
|
543 |
|
544 |
+
import requests
|
545 |
+
|
546 |
+
def fetch_youtube_video_title(video_url):
|
547 |
+
"""Fetch the title of a YouTube video using the YouTube Data API"""
|
548 |
+
api_key = os.getenv("YOUTUBE_API_KEY")
|
549 |
+
video_id = extract_youtube_id(video_url)
|
550 |
+
if not video_id:
|
551 |
+
return None
|
552 |
+
|
553 |
+
url = f"https://www.googleapis.com/youtube/v3/videos?id={video_id}&key={api_key}&part=snippet"
|
554 |
+
response = requests.get(url)
|
555 |
+
if response.status_code == 200:
|
556 |
+
data = response.json()
|
557 |
+
if "items" in data and len(data["items"]) > 0:
|
558 |
+
return data["items"][0]["snippet"]["title"]
|
559 |
+
return None
|
560 |
+
|
561 |
+
def upload_video_source(course_id, session_id, video_url):
|
562 |
+
"""Upload video source and its transcript to the database"""
|
563 |
+
# Fetch video title
|
564 |
+
video_title = fetch_youtube_video_title(video_url)
|
565 |
+
if not video_title:
|
566 |
+
st.error("Could not fetch the video title from the provided YouTube URL.")
|
567 |
+
return
|
568 |
+
# print("Video Title: ", video_title)
|
569 |
+
# Extract transcript from YouTube video
|
570 |
+
transcript = extract_youtube_transcript(video_url)
|
571 |
+
|
572 |
+
if not transcript:
|
573 |
+
st.error("Could not extract transcript from the provided YouTube URL.")
|
574 |
+
return
|
575 |
+
|
576 |
+
# Create resource document
|
577 |
+
resource_data = {
|
578 |
+
"_id": ObjectId(),
|
579 |
+
"course_id": course_id,
|
580 |
+
"session_id": session_id,
|
581 |
+
"file_name": video_title,
|
582 |
+
"file_type": "video",
|
583 |
+
"text_content": transcript,
|
584 |
+
"material_type": "video",
|
585 |
+
"source_url": video_url,
|
586 |
+
"uploaded_at": datetime.utcnow()
|
587 |
+
}
|
588 |
+
# Check if resource already exists
|
589 |
+
existing_resource = resources_collection.find_one({
|
590 |
+
"session_id": session_id,
|
591 |
+
"source_url": video_url
|
592 |
+
})
|
593 |
+
|
594 |
+
if existing_resource:
|
595 |
+
st.warning("This video resource already exists.")
|
596 |
+
return existing_resource["_id"]
|
597 |
+
|
598 |
+
# Insert new resource
|
599 |
+
resources_collection.insert_one(resource_data)
|
600 |
+
resource_id = resource_data["_id"]
|
601 |
+
|
602 |
+
# Update course document
|
603 |
+
courses_collection.update_one(
|
604 |
+
{
|
605 |
+
"course_id": course_id,
|
606 |
+
"sessions.session_id": session_id
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"$push": {"sessions.$.pre_class.resources": resource_id}
|
610 |
+
}
|
611 |
+
)
|
612 |
+
# Create vector store for the transcript
|
613 |
+
create_vector_store(transcript, resource_id)
|
614 |
+
|
615 |
+
# st.success("Video source uploaded successfully!")
|
616 |
+
return resource_id
|
617 |
+
|
618 |
+
def upload_preclass_materials(session_id, course_id):
|
619 |
+
"""Upload pre-class materials and manage external resources for a session"""
|
620 |
+
st.subheader("Pre-class Materials Management")
|
621 |
+
|
622 |
+
# Create tabs for different functionalities
|
623 |
+
upload_tab, external_tab = st.tabs(["Upload Materials", "External Resources"])
|
624 |
+
|
625 |
+
with upload_tab:
|
626 |
+
# Original file upload functionality
|
627 |
+
uploaded_file = st.file_uploader("Upload Material", type=['txt', 'pdf', 'docx'])
|
628 |
+
if uploaded_file is not None:
|
629 |
+
with st.spinner("Processing document..."):
|
630 |
+
file_name = uploaded_file.name
|
631 |
+
file_content = extract_text_from_file(uploaded_file)
|
632 |
+
if file_content:
|
633 |
+
material_type = st.selectbox("Select Material Type", ["pdf", "docx", "txt"])
|
634 |
+
if st.button("Upload Material"):
|
635 |
+
upload_resource(course_id, session_id, file_name, uploaded_file, material_type)
|
636 |
+
st.success("Material uploaded successfully!")
|
637 |
+
|
638 |
+
with external_tab:
|
639 |
+
# Fetch and display external resources
|
640 |
+
session_data = courses_collection.find_one(
|
641 |
+
{"course_id": course_id, "sessions.session_id": session_id},
|
642 |
+
{"sessions.$": 1}
|
643 |
+
)
|
644 |
+
|
645 |
+
if session_data and session_data.get('sessions'):
|
646 |
+
session = session_data['sessions'][0]
|
647 |
+
external = session.get('external_resources', {})
|
648 |
+
|
649 |
+
# Display web articles
|
650 |
+
if 'readings' in external:
|
651 |
+
st.subheader("Web Articles and Videos")
|
652 |
+
for reading in external['readings']:
|
653 |
+
col1, col2 = st.columns([3, 1])
|
654 |
+
with col1:
|
655 |
+
st.markdown(f"**{reading['title']}**")
|
656 |
+
st.markdown(f"Type: {reading['type']} | Est. time: {reading['estimated_read_time']}")
|
657 |
+
st.markdown(f"URL: [{reading['url']}]({reading['url']})")
|
658 |
+
with col2:
|
659 |
+
if st.button("Extract Content", key=f"extract_{reading['url']}"):
|
660 |
+
with st.spinner("Extracting content..."):
|
661 |
+
content = extract_external_content(reading['url'], reading['type'])
|
662 |
+
if content:
|
663 |
+
resource_id = upload_external_resource(
|
664 |
+
course_id,
|
665 |
+
session_id,
|
666 |
+
reading['title'],
|
667 |
+
content,
|
668 |
+
reading['type'].lower(),
|
669 |
+
reading['url']
|
670 |
+
)
|
671 |
+
st.success("Content extracted and stored successfully!")
|
672 |
+
|
673 |
+
# Display books
|
674 |
+
if 'books' in external:
|
675 |
+
st.subheader("Recommended Books")
|
676 |
+
for book in external['books']:
|
677 |
+
st.markdown(f"""
|
678 |
+
**{book['title']}** by {book['author']}
|
679 |
+
- ISBN: {book['isbn']}
|
680 |
+
- Chapters: {book['chapters']}
|
681 |
+
""")
|
682 |
+
|
683 |
+
# Display additional resources
|
684 |
+
if 'additional_resources' in external:
|
685 |
+
st.subheader("Additional Resources")
|
686 |
+
for resource in external['additional_resources']:
|
687 |
+
st.markdown(f"""
|
688 |
+
**{resource['title']}** ({resource['type']})
|
689 |
+
- {resource['description']}
|
690 |
+
- URL: [{resource['url']}]({resource['url']})
|
691 |
+
""")
|
692 |
+
|
693 |
+
def extract_external_content(url, content_type):
|
694 |
+
"""Extract content from external resources based on their type"""
|
695 |
+
try:
|
696 |
+
if content_type.lower() == 'video' and 'youtube.com' in url:
|
697 |
+
return extract_youtube_transcript(url)
|
698 |
+
else:
|
699 |
+
return extract_web_article(url)
|
700 |
+
except Exception as e:
|
701 |
+
st.error(f"Error extracting content: {str(e)}")
|
702 |
+
return None
|
703 |
+
|
704 |
+
def extract_youtube_transcript(url):
|
705 |
+
"""Extract transcript from YouTube videos"""
|
706 |
+
try:
|
707 |
+
# Extract video ID from URL
|
708 |
+
video_id = url.split('v=')[1].split('&')[0]
|
709 |
+
|
710 |
+
# Get transcript
|
711 |
+
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
712 |
+
# Combine transcript text
|
713 |
+
full_text = ' '.join([entry['text'] for entry in transcript])
|
714 |
+
return full_text
|
715 |
+
except Exception as e:
|
716 |
+
st.error(f"Could not extract YouTube transcript: {str(e)}")
|
717 |
+
return None
|
718 |
+
|
719 |
+
def extract_web_article(url):
|
720 |
+
"""Extract text content from web articles"""
|
721 |
+
try:
|
722 |
+
headers = {
|
723 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
724 |
+
}
|
725 |
+
response = requests.get(url, headers=headers)
|
726 |
+
response.raise_for_status()
|
727 |
+
|
728 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
729 |
+
|
730 |
+
# Remove unwanted tags
|
731 |
+
for tag in soup(['script', 'style', 'nav', 'footer', 'header']):
|
732 |
+
tag.decompose()
|
733 |
+
|
734 |
+
# Extract text from paragraphs
|
735 |
+
paragraphs = soup.find_all('p')
|
736 |
+
text_content = ' '.join([p.get_text().strip() for p in paragraphs])
|
737 |
+
|
738 |
+
return text_content
|
739 |
+
except Exception as e:
|
740 |
+
st.error(f"Could not extract web article content: {str(e)}")
|
741 |
+
return None
|
742 |
+
|
743 |
+
def upload_external_resource(course_id, session_id, title, content, content_type, source_url):
|
744 |
+
"""Upload extracted external resource content to the database"""
|
745 |
+
resource_data = {
|
746 |
+
"_id": ObjectId(),
|
747 |
+
"course_id": course_id,
|
748 |
+
"session_id": session_id,
|
749 |
+
"file_name": f"{title} ({content_type})",
|
750 |
+
"file_type": "external",
|
751 |
+
"text_content": content,
|
752 |
+
"material_type": content_type,
|
753 |
+
"source_url": source_url,
|
754 |
+
"uploaded_at": datetime.utcnow()
|
755 |
+
}
|
756 |
+
|
757 |
+
# Check if resource already exists
|
758 |
+
existing_resource = resources_collection.find_one({
|
759 |
+
"session_id": session_id,
|
760 |
+
"source_url": source_url
|
761 |
+
})
|
762 |
+
|
763 |
+
if existing_resource:
|
764 |
+
return existing_resource["_id"]
|
765 |
+
|
766 |
+
# Insert new resource
|
767 |
+
resources_collection.insert_one(resource_data)
|
768 |
+
resource_id = resource_data["_id"]
|
769 |
+
|
770 |
+
# Update course document
|
771 |
+
courses_collection.update_one(
|
772 |
+
{
|
773 |
+
"course_id": course_id,
|
774 |
+
"sessions.session_id": session_id
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"$push": {"sessions.$.pre_class.resources": resource_id}
|
778 |
+
}
|
779 |
+
)
|
780 |
+
|
781 |
+
if content:
|
782 |
+
create_vector_store(content, resource_id)
|
783 |
+
|
784 |
+
return resource_id
|
785 |
|
786 |
def extract_youtube_id(url):
|
787 |
"""Extract YouTube video ID from URL"""
|
|
|
797 |
return None
|
798 |
return None
|
799 |
|
800 |
+
def display_live_presentation(session, user_type, course_id):
|
801 |
+
st.markdown("### Live Presentation")
|
802 |
+
|
803 |
+
# Get active presentation
|
804 |
+
session_data = courses_collection.find_one(
|
805 |
+
{"course_id": course_id, "sessions.session_id": session['session_id']},
|
806 |
+
{"sessions.$": 1}
|
807 |
+
)
|
808 |
+
active_presentation = session_data["sessions"][0].get("in_class", {}).get("active_presentation")
|
809 |
+
|
810 |
+
# Faculty Interface
|
811 |
+
if user_type == 'faculty':
|
812 |
+
if not active_presentation:
|
813 |
+
st.markdown("""
|
814 |
+
<style>
|
815 |
+
.url-container {
|
816 |
+
background-color: #f8f9fa;
|
817 |
+
padding: 20px;
|
818 |
+
border-radius: 10px;
|
819 |
+
margin: 10px 0;
|
820 |
+
}
|
821 |
+
.button-container {
|
822 |
+
display: flex;
|
823 |
+
justify-content: space-between;
|
824 |
+
margin-top: 10px;
|
825 |
+
}
|
826 |
+
</style>
|
827 |
+
""", unsafe_allow_html=True)
|
828 |
+
|
829 |
+
# URL input section
|
830 |
+
with st.container():
|
831 |
+
ppt_url = st.text_input("🔗 Enter Google Slides Presentation URL",
|
832 |
+
placeholder="https://docs.google.com/presentation/...")
|
833 |
+
|
834 |
+
if ppt_url:
|
835 |
+
if st.button("▶️ Activate Presentation",
|
836 |
+
use_container_width=True):
|
837 |
+
courses_collection.update_one(
|
838 |
+
{"course_id": course_id, "sessions.session_id": session['session_id']},
|
839 |
+
{"$set": {"sessions.$.in_class.active_presentation": ppt_url}}
|
840 |
+
)
|
841 |
+
st.success("✅ Presentation activated successfully!")
|
842 |
+
st.rerun()
|
843 |
+
else:
|
844 |
+
# Display active presentation
|
845 |
+
st.markdown("#### 🎯 Active Presentation")
|
846 |
+
components.iframe(active_presentation, height=800)
|
847 |
+
|
848 |
+
# Deactivate button
|
849 |
+
st.markdown("<div style='margin-top: 20px;'></div>", unsafe_allow_html=True)
|
850 |
+
if st.button("⏹️ Deactivate Presentation",
|
851 |
+
type="secondary",
|
852 |
+
use_container_width=True):
|
853 |
+
courses_collection.update_one(
|
854 |
+
{"course_id": course_id, "sessions.session_id": session['session_id']},
|
855 |
+
{"$unset": {"sessions.$.in_class.active_presentation": ""}}
|
856 |
+
)
|
857 |
+
st.success("✅ Presentation deactivated successfully!")
|
858 |
+
st.rerun()
|
859 |
+
|
860 |
+
# Student Interface
|
861 |
+
else:
|
862 |
+
if active_presentation:
|
863 |
+
st.markdown("#### 🎯 Active Presentation")
|
864 |
+
components.iframe(active_presentation, height=800)
|
865 |
+
else:
|
866 |
+
st.info("📝 No active presentations at this time.")
|
867 |
|
868 |
+
def display_in_class_content(session, user_type, course_id, user_id):
|
869 |
# """Display in-class activities and interactions"""
|
870 |
"""Display in-class activities and interactions"""
|
871 |
st.header("In-class Activities")
|
|
|
878 |
live_polls.display_faculty_interface(session['session_id'])
|
879 |
else:
|
880 |
live_polls.display_student_interface(session['session_id'])
|
881 |
+
|
882 |
+
display_live_chat_interface(session, user_id, course_id=course_id)
|
883 |
+
|
884 |
+
# Live Presentation Feature
|
885 |
+
display_live_presentation(session, user_type, course_id)
|
886 |
|
887 |
def generate_random_assignment_id():
|
888 |
"""Generate a random integer ID for assignments"""
|
|
|
1670 |
# with open(r'topics.json', 'r') as file:
|
1671 |
# topics = json.load(file)
|
1672 |
|
1673 |
+
def get_preclass_analytics(session, course_id):
|
1674 |
# Earlier Code:
|
1675 |
# """Get all user_ids from chat_history collection where session_id matches"""
|
1676 |
# user_ids = chat_history_collection.distinct("user_id", {"session_id": session['session_id']})
|
|
|
1792 |
print("Fallback analytics returned") # Debug print 8
|
1793 |
return None
|
1794 |
else:
|
1795 |
+
try:
|
1796 |
+
courses_collection.update_one(
|
1797 |
+
{"course_id": course_id, "sessions.session_id": session['session_id']},
|
1798 |
+
{"$set": {"sessions.$.pre_class.analytics": analytics2}}
|
1799 |
+
)
|
1800 |
+
except Exception as e:
|
1801 |
+
print("Error storing analytics:", str(e))
|
1802 |
return analytics2
|
1803 |
|
1804 |
|
|
|
|
|
1805 |
# Load Analytics from a JSON file
|
1806 |
# analytics = []
|
1807 |
# with open(r'new_analytics2.json', 'r') as file:
|
|
|
1822 |
# Initialize or get analytics data from session state
|
1823 |
if 'analytics_data' not in st.session_state:
|
1824 |
# Add debug prints
|
1825 |
+
analytics_data = get_preclass_analytics(session, course)
|
1826 |
if analytics_data is None:
|
1827 |
st.info("Fetching new analytics data...")
|
1828 |
if analytics_data is None:
|
|
|
2225 |
# Uploaded on: {material['uploaded_at'].strftime('%Y-%m-%d %H:%M')}
|
2226 |
# """)
|
2227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2229 |
|
2230 |
def display_quiz_tab(student_id, course_id, session_id):
|
2231 |
"""Display quizzes for students"""
|
|
|
2860 |
print(f"Error in display_subjective_test_tab: {str(e)}", flush=True)
|
2861 |
st.error("An error occurred while loading the tests. Please try again later.")
|
2862 |
|
2863 |
+
|
2864 |
+
|
2865 |
def display_subjective_analysis(test_id, student_id, context):
|
2866 |
"""Display subjective test analysis to students and faculty"""
|
2867 |
try:
|