File size: 15,313 Bytes
4eba3d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e107ee4
 
 
 
 
 
 
 
4eba3d2
 
 
 
e107ee4
4eba3d2
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eba3d2
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eba3d2
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eba3d2
 
 
 
 
 
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# import streamlit as st
# import pandas as pd
# import networkx as nx
# from bokeh.models import HoverTool
# from bokeh.plotting import figure, from_networkx
# import requests
# import json
# import google.generativeai as genai

# PERPLEXITY_API_KEY = "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"
# PERPLEXITY_API_URL = "https://api.perplexity.ai/chat/completions"


# def extract_edges(keywords):
#     keywords = [kw.strip() for kw in keywords.split(",")]
#     edges = [
#         (keywords[i], keywords[j])
#         for i in range(len(keywords))
#         for j in range(i + 1, len(keywords))
#     ]
#     return edges


# def create_knowledge_graph(data):
#     G = nx.Graph()

#     for _, row in data.iterrows():
#         words = []
#         for col in data.columns:
#             if pd.notnull(row[col]):
#                 # Convert to string and handle numeric values
#                 cell_value = str(row[col]).strip()
#                 if cell_value:
#                     words.extend(cell_value.split())

#         if words:
#             edges = extract_edges(",".join(words))
#             G.add_edges_from(edges)

#             for word in words:
#                 word = word.strip()
#                 if word not in G:
#                     G.add_node(word, title=word, value=len(word))

#     return G


# def render_graph_bokeh(G):
#     plot = figure(
#         title="Interactive Knowledge Graph",
#         x_range=(-1.5, 1.5),
#         y_range=(-1.5, 1.5),
#         tools="pan,wheel_zoom,box_zoom,reset,tap",
#         active_scroll="wheel_zoom",
#     )
#     plot.add_tools(HoverTool(tooltips="@index"))

#     graph_renderer = from_networkx(G, nx.spring_layout, scale=1, center=(0, 0))

#     graph_renderer.node_renderer.glyph.size = 10
#     graph_renderer.node_renderer.glyph.fill_color = "blue"
#     graph_renderer.node_renderer.glyph.line_color = "black"

#     graph_renderer.edge_renderer.glyph.line_width = 1
#     graph_renderer.edge_renderer.glyph.line_color = "gray"

#     plot.renderers.append(graph_renderer)

#     return plot


# import re


# def search_papers(topic: str, num_papers: int) -> list:
#     headers = {
#         "Authorization": f"Bearer {PERPLEXITY_API_KEY}",
#         "Content-Type": "application/json",
#     }

#     prompt = f"""Find {num_papers} recent research papers about {topic}.
#     Return ONLY a valid JSON array with the following structure for each paper:
#     [
#         {{
#             "Title": "paper title",
#             "Abstract": "abstract text",
#             "Keywords": "key terms"
#         }}
#     ]"""

#     payload = {
#         "model": "llama-3.1-sonar-small-128k-chat",
#         "messages": [
#             {
#                 "role": "system",
#                 "content": "You are a research paper analyzer that returns valid JSON arrays.",
#             },
#             {"role": "user", "content": prompt},
#         ],
#         "temperature": 0.1,
#     }

#     try:
#         response = requests.post(PERPLEXITY_API_URL, headers=headers, json=payload)
#         response.raise_for_status()
#         content = response.json()["choices"][0]["message"]["content"]

#         # Clean response to ensure valid JSON
#         content = content.strip()
#         if not content.startswith("["):
#             content = content[content.find("[") :]
#         if not content.endswith("]"):
#             content = content[: content.rfind("]") + 1]

#         # Remove any trailing commas before closing brackets
#         content = re.sub(r",\s*]", "]", content)
#         content = re.sub(r",\s*}", "}", content)

#         papers = json.loads(content)
#         if not isinstance(papers, list):
#             raise ValueError("Response is not a JSON array")
#         return papers
#     except requests.exceptions.RequestException as e:
#         st.error(f"API Request Error: {str(e)}")
#         return []
#     except json.JSONDecodeError as e:
#         st.error(f"Invalid JSON response: {str(e)}")
#         st.error(f"Response content: {response.text}")
#         return []
#     except ValueError as e:
#         st.error(f"Error: {str(e)}")
#         return []


# import os

# GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# GEMINI_API_URL = "https://api.openai.com/v1/engines/davinci-codex/completions"


# def call_gemini_api(prompt: str) -> str:
#     headers = {
#         "Authorization": f"Bearer {GEMINI_API_KEY}",
#         "Content-Type": "application/json",
#     }

#     payload = {
#         "prompt": prompt,
#         "max_tokens": 150,
#         "temperature": 0.7,
#     }

#     try:
#         model = genai.GenerativeModel("gemini-pro")
#         response = model.generate_content(prompt)
#         return response.text
#     except Exception as e:
#         st.error(f"Gemini API Error: {str(e)}")
#         return ""


# def generate_gaps_paragraph(gaps):
#     prompt = f"Generate a brief paragraph about the gaps in the research based on the following gaps: {', '.join(gaps)}"
#     return call_gemini_api(prompt)


# def generate_insights(G, topic):
#     papers = search_papers(topic, 5)
#     if papers:
#         st.write("### Research Insights from Perplexity API")
#         for paper in papers:
#             st.write(f"**Title:** {paper['Title']}")
#             st.write(f"**Abstract:** {paper['Abstract']}")
#             st.write(f"**Keywords:** {paper['Keywords']}")
#             st.write("---")

#     nodes = list(G.nodes(data=True))
#     insights = {}
#     insights["Strong Points"] = [
#         n for n, d in nodes if G.degree(n) > len(G.nodes) * 0.1
#     ]
#     insights["Weak Points"] = [n for n, d in nodes if G.degree(n) < len(G.nodes) * 0.05]
#     insights["Gaps"] = [n for n, d in nodes if len(list(nx.neighbors(G, n))) == 0]

#     st.write("### Graph-Based Insights")
#     st.write("**Strong Points:**", insights["Strong Points"])
#     st.write("**Weak Points:**", insights["Weak Points"])
#     st.write("**Gaps:**", insights["Gaps"])

#     if insights["Gaps"]:
#         with st.spinner("Generating insights about gaps..."):
#             gaps_paragraph = generate_gaps_paragraph(insights["Gaps"])
#             if gaps_paragraph:
#                 st.write("### Gaps in Research")
#                 st.write(gaps_paragraph)


# def main():
#     st.title("Advanced Interactive Knowledge Graph")
#     st.write(
#         "Upload a CSV file to generate a fully interactive and insightful knowledge graph."
#     )

#     uploaded_file = st.file_uploader("Choose a CSV file", type="csv")

#     if uploaded_file is not None:
#         try:
#             data = pd.read_csv(uploaded_file)
#             st.write("Preview of the uploaded data:")
#             st.dataframe(data.head())

#             G = create_knowledge_graph(data)

#             st.write("Generated Knowledge Graph:")
#             plot = render_graph_bokeh(G)
#             st.bokeh_chart(plot, use_container_width=True)

#             topic = st.text_input(
#                 "Enter a topic for additional insights:", "knowledge graphs"
#             )
#             if topic:
#                 generate_insights(G, topic)

#         except Exception as e:
#             st.error(f"An error occurred while processing the file: {e}")
#     else:
#         st.info("Please upload a CSV file to get started.")


# if __name__ == "__main__":
#     main()
import streamlit as st
import pandas as pd
import networkx as nx
from bokeh.models import HoverTool
from bokeh.plotting import figure, from_networkx
import requests
import json
import google.generativeai as genai
from dotenv import load_dotenv
import os

load_dotenv()

PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_API_KEY")
PERPLEXITY_API_URL = "https://api.perplexity.ai/chat/completions"


def extract_edges(keywords):
    keywords = [kw.strip() for kw in keywords.split(",")]
    edges = [
        (keywords[i], keywords[j])
        for i in range(len(keywords))
        for j in range(i + 1, len(keywords))
    ]
    return edges


def create_knowledge_graph(data):
    G = nx.Graph()

    for _, row in data.iterrows():
        words = []
        for col in data.columns:
            if pd.notnull(row[col]):
                # Convert to string and handle numeric values
                cell_value = str(row[col]).strip()
                if cell_value:
                    words.extend(cell_value.split())

        if words:
            edges = extract_edges(",".join(words))
            G.add_edges_from(edges)

            for word in words:
                word = word.strip()
                if word not in G:
                    G.add_node(word, title=word, value=len(word))

    return G


def render_graph_bokeh(G):
    plot = figure(
        title="Interactive Knowledge Graph",
        x_range=(-1.5, 1.5),
        y_range=(-1.5, 1.5),
        tools="pan,wheel_zoom,box_zoom,reset,tap",
        active_scroll="wheel_zoom",
    )
    plot.add_tools(HoverTool(tooltips="@index"))

    graph_renderer = from_networkx(G, nx.spring_layout, scale=1, center=(0, 0))

    graph_renderer.node_renderer.glyph.size = 10
    graph_renderer.node_renderer.glyph.fill_color = "blue"
    graph_renderer.node_renderer.glyph.line_color = "black"

    graph_renderer.edge_renderer.glyph.line_width = 1
    graph_renderer.edge_renderer.glyph.line_color = "gray"

    plot.renderers.append(graph_renderer)

    return plot


import re


def search_papers(topic: str, num_papers: int) -> list:
    headers = {
        "Authorization": f"Bearer {PERPLEXITY_API_KEY}",
        "Content-Type": "application/json",
    }

    prompt = f"""Find {num_papers} recent research papers about {topic}.
    Return ONLY a valid JSON array with the following structure for each paper:
    [
        {{
            "Title": "paper title",
            "Abstract": "abstract text",
            "Keywords": "key terms"
        }}
    ]"""

    payload = {
        "model": "llama-3.1-sonar-small-128k-chat",
        "messages": [
            {
                "role": "system",
                "content": "You are a research paper analyzer that returns valid JSON arrays.",
            },
            {"role": "user", "content": prompt},
        ],
        "temperature": 0.1,
    }

    try:
        response = requests.post(PERPLEXITY_API_URL, headers=headers, json=payload)
        response.raise_for_status()
        content = response.json()["choices"][0]["message"]["content"]

        # Clean response to ensure valid JSON
        content = content.strip()
        if not content.startswith("["):
            content = content[content.find("[") :]
        if not content.endswith("]"):
            content = content[: content.rfind("]") + 1]

        # Remove any trailing commas before closing brackets
        content = re.sub(r",\s*]", "]", content)
        content = re.sub(r",\s*}", "}", content)

        papers = json.loads(content)
        if not isinstance(papers, list):
            raise ValueError("Response is not a JSON array")
        return papers
    except requests.exceptions.RequestException as e:
        st.error(f"API Request Error: {str(e)}")
        return []
    except json.JSONDecodeError as e:
        st.error(f"Invalid JSON response: {str(e)}")
        st.error(f"Response content: {response.text}")
        return []
    except ValueError as e:
        st.error(f"Error: {str(e)}")
        return []




GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
GEMINI_API_URL = "https://api.openai.com/v1/engines/davinci-codex/completions"


def call_gemini_api(prompt: str) -> str:
    headers = {
        "Authorization": f"Bearer {GEMINI_API_KEY}",
        "Content-Type": "application/json",
    }

    payload = {
        "prompt": prompt,
        "max_tokens": 150,
        "temperature": 0.7,
    }

    try:
        model = genai.GenerativeModel("gemini-pro")
        response = model.generate_content(prompt)
        return response.text
    except Exception as e:
        st.error(f"Gemini API Error: {str(e)}")
        return ""


def generate_gaps_paragraph(gaps):
    prompt = f"Generate a brief paragraph about the gaps in the research based on the following gaps  provide evidence-based(how did you deduce this) recommendations for new research paper ideas based on these gaps,   Justify your recommendations with evidence from the data it analyzes. Give atleast 10 new  research paper ideas based on the gaps and 500 words gap analysis,Give a different table for new research ideas with evidence that why did you reccommend it, In the new Table Containing Research Paper Ideas there should be 4 columns - New Research Paper Idea/Title,Evidence , Methodology(How will we approach the ideo new research paper), Evidence Of How Methodology was obtained: {', '.join(gaps)}"
    return call_gemini_api(prompt)


def generate_insights(G, topic):
    papers = search_papers(topic, 5)
    if papers:
        st.write("### Research Insights from Perplexity API")
        for paper in papers:
            st.write(f"**Title:** {paper['Title']}")
            st.write(f"**Abstract:** {paper['Abstract']}")
            st.write(f"**Keywords:** {paper['Keywords']}")
            st.write("---")

    nodes = list(G.nodes(data=True))
    insights = {}
    insights["Strong Points"] = [
        n for n, d in nodes if G.degree(n) > len(G.nodes) * 0.1
    ]
    insights["Weak Points"] = [n for n, d in nodes if G.degree(n) < len(G.nodes) * 0.05]
    insights["Gaps"] = [n for n, d in nodes if len(list(nx.neighbors(G, n))) == 0]

    st.write("### Graph-Based Insights")
    st.write("**Strong Points:**", insights["Strong Points"])
    st.write("**Weak Points:**", insights["Weak Points"])
    st.write("**Gaps:**", insights["Gaps"])

    if insights["Gaps"]:
        with st.spinner("Generating insights about gaps..."):
            gaps_paragraph = generate_gaps_paragraph(insights["Gaps"])
            if gaps_paragraph:
                st.write("### Gaps in Research")
                st.write(gaps_paragraph)
                st.download_button(
                    label="Download Gaps Analysis as Text",
                    data=gaps_paragraph,
                    file_name="gaps_analysis.txt",
                    mime="text/plain",
                )

def main():
    st.title("Advanced Interactive Knowledge Graph")
    st.write(
        "Upload a CSV file to generate a fully interactive and insightful knowledge graph."
    )

    uploaded_file = st.file_uploader("Choose a CSV file", type="csv")

    if uploaded_file is not None:
        try:
            data = pd.read_csv(uploaded_file)
            st.write("Preview of the uploaded data:")
            st.dataframe(data.head())

            G = create_knowledge_graph(data)

            st.write("Generated Knowledge Graph:")
            plot = render_graph_bokeh(G)
            st.bokeh_chart(plot, use_container_width=True)

            topic = st.text_input(
                "Enter a topic for additional insights:", "knowledge graphs"
            )
            if topic:
                generate_insights(G, topic)

        except Exception as e:
            st.error(f"An error occurred while processing the file: {e}")
    else:
        st.info("Please upload a CSV file to get started.")


if __name__ == "__main__":
    main()