File size: 13,448 Bytes
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from datetime import datetime, timedelta
import os
from typing import Dict, List, Any
from pymongo import MongoClient
import requests
import uuid
import openai
from openai import OpenAI
import streamlit as st
from bson import ObjectId
from dotenv import load_dotenv
import json

load_dotenv()
MONGODB_URI = os.getenv("MONGO_URI")
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_KEY")

client = MongoClient(MONGODB_URI)
db = client['novascholar_db']
courses_collection = db['courses']

def generate_perplexity_response(api_key, course_name, duration_weeks, sessions_per_week):
    headers = {
        "accept": "application/json",
        "content-type": "application/json",
        "authorization": f"Bearer {api_key}"
    }
    
    # Calculate sessions based on duration
    total_sessions = duration_weeks * sessions_per_week  # Assuming 2 sessions per week
    
    prompt = f"""
    You are an expert educational AI assistant specializing in curriculum design and instructional planning. Your task is to generate a comprehensive, academically rigorous course structure for the course {course_name} that fits exactly within {duration_weeks} weeks with {total_sessions} total sessions ({sessions_per_week} sessions per week).

    Please generate a detailed course structure in JSON format following these specifications:

    1. The course structure must be designed for exactly {duration_weeks} weeks with {total_sessions} total sessions
    2. Each module should contain an appropriate number of sessions that sum up to exactly {total_sessions}
    3. Each session should be designed for a 1-1.5-hour class duration
    4. Follow standard academic practices and nomenclature
    5. Ensure progressive complexity from foundational to advanced concepts
    6. The course_title should exactly match the course name provided
    7. Ensure that the property names are enclosed in double quotes (") and followed by a colon (:), and the values are enclosed in double quotes (").
    8. **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.**

    The JSON response should follow this structure:
    {{
        "course_title": "string",
        "course_description": "string",
        "total_duration_weeks": {duration_weeks},
        "sessions_per_week": {sessions_per_week},
        "total_sessions": {total_sessions},
        "modules": [
            {{
                "module_title": "string",
                "module_duration_sessions": number,
                "sub_modules": [
                    {{
                        "title": "string",
                        "topics": [
                            {{
                                "title": "string",
                                "short_description": "string",
                                "concise_learning_objectives": ["string"]
                            }}
                        ]
                    }}
                ]
            }}
        ]
    }}

    Ensure that:
    1. The sum of all module_duration_sessions equals exactly {total_sessions}
    2. Each topic has clear learning objectives
    3. Topics build upon each other logically
    4. Content is distributed evenly across the available sessions
    5. **This Instruction is Strictly followed: **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.****

    """

    messages = [
        {
            "role": "system",
            "content": (
                "You are an expert educational AI assistant specializing in course design and curriculum planning. "
                "Your task is to generate accurate, detailed, and structured educational content that precisely fits "
                "the specified duration."
            ),
        },
        {
            "role": "user",
            "content": prompt
        },
    ]
    
    try:
        client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
        response = client.chat.completions.create(
            model="llama-3.1-sonar-small-128k-online",
            messages=messages
        )
        content = response.choices[0].message.content
        
        # Validate session count
        course_plan = json.loads(content)
        total_planned_sessions = sum(
            module.get('module_duration_sessions', 0) 
            for module in course_plan.get('modules', [])
        )
        
        if abs(total_planned_sessions - total_sessions) > 5:
            raise ValueError(f"Generated plan has {total_planned_sessions} sessions, but {total_sessions} were requested")
            
        return content
    except Exception as e:
        st.error(f"Failed to fetch data from Perplexity API: {e}")
        return ""

def generate_session_resources(api_key, session_titles: List[str]):
    """
    Generate relevant resources for each session title separately
    """
    resources_prompt = f"""
    You are an expert educational content curator. For each session title provided, suggest highly relevant and accurate learning resources.
    Please provide resources for these sessions: {session_titles}

    For each session, provide resources in this JSON format:
    {{
        "session_resources": [
            {{
                "session_title": "string",
                "resources": {{
                    "readings": [
                        {{
                            "title": "string",
                            "url": "string",
                            "type": "string",
                            "estimated_read_time": "string"
                        }}
                    ],
                    "books": [
                        {{
                            "title": "string",
                            "author": "string",
                            "isbn": "string",
                            "chapters": "string"
                        }}
                    ],
                    "additional_resources": [
                        {{
                            "title": "string",
                            "url": "string",
                            "type": "string",
                            "description": "string"
                        }}
                    ]
                }}
            }}
        ]
    }}

    Guidelines:
    1. Ensure all URLs are real and currently active
    2. Prioritize high-quality, authoritative sources
    3. Include 1-2 resources of each type
    5. For readings, include a mix of academic and practical resources. It can exceed to 3-4 readings 
    6. Book references should be real, recently published works
    7. Additional resources can include tools, documentation, or practice platforms
    8. Ensure that the property names are enclosed in double quotes (") and followed by a colon (:), and the values are enclosed in double quotes (").
    9. ***NOTE: **DO NOT INCLUDE THE WORD JSON IN THE OUTPUT STRING, DO NOT INCLUDE BACKTICKS (```) IN THE OUTPUT, AND DO NOT INCLUDE ANY OTHER TEXT, OTHER THAN THE ACTUAL JSON RESPONSE. START THE RESPONSE STRING WITH AN OPEN CURLY BRACE {{ AND END WITH A CLOSING CURLY BRACE }}.**
    """

    messages = [
        {
            "role": "system",
            "content": "You are an expert educational content curator, focused on providing accurate and relevant learning resources.",
        },
        {
            "role": "user",
            "content": resources_prompt
        },
    ]

    try:
        client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
        response = client.chat.completions.create(
            model="llama-3.1-sonar-small-128k-online",
            messages=messages
        )
        print("Response is: \n", response.choices[0].message.content)
        # try:
        #     return json.loads(response.choices[0].message.content)
        # except json.JSONDecodeError as e:
        #     st.error(f"Failed to decode JSON response: {e}")
        #     return None
        return response.choices[0].message.content
    except Exception as e:
        st.error(f"Failed to generate resources: {e}")
        return None

def validate_course_plan(course_plan):
    required_fields = ['course_title', 'course_description', 'modules']
    if not all(field in course_plan for field in required_fields):
        raise ValueError("Invalid course plan structure")
    
    for module in course_plan['modules']:
        if 'module_title' not in module or 'sub_modules' not in module:
            raise ValueError("Invalid module structure")

def create_session(title: str, date: datetime, module_name: str, resources: dict):
    """Create a session document with pre-class, in-class, and post-class components."""
    return {
        "session_id": ObjectId(),
        "title": title,
        "date": date,
        "status": "upcoming",
        "created_at": datetime.utcnow(),
        "module_name": module_name,
        "pre_class": {
            "resources": [],
            "completion_required": True
        },
        "in_class": {
            "quiz": [],
            "polls": []
        },
        "post_class": {
            "assignments": []
        },
        "external_resources": {
            "readings": resources.get("readings", []),
            "books": resources.get("books", []),
            "additional_resources": resources.get("additional_resources", [])
        }
    }

def create_course(course_name: str, start_date: datetime, duration_weeks: int, sessions_per_week: int):
    # First generate a course plan using Perplexity API
    # course_plan = generate_perplexity_response(PERPLEXITY_API_KEY, course_name, duration_weeks, sessions_per_week)
    # course_plan_json = json.loads(course_plan)
    
    # print("Course Structure is: \n", course_plan_json);

    # Earlier Code: 
    # Generate sessions for each module with resources
    # all_sessions = []
    # current_date = start_date
    
    # for module in course_plan_json['modules']:
    #     for sub_module in module['sub_modules']:
    #         for topic in sub_module['topics']:
    #             session = create_session(
    #                 title=topic['title'],
    #                 date=current_date,
    #                 module_name=module['module_title'],
    #                 resources=topic['resources']
    #             )
    #             all_sessions.append(session)
    #             current_date += timedelta(days=3.5)  # Spacing sessions evenly across the week
    
    # return course_plan_json, all_sessions

    # New Code:
    # Extract all session titles
    session_titles = []
    # Load the course plan JSON
    course_plan_json = {}
    with open('sample_files/sample_course.json', 'r') as file:
        course_plan_json = json.load(file)

    for module in course_plan_json['modules']:
        for sub_module in module['sub_modules']:
            for topic in sub_module['topics']:
                session_titles.append(topic['title'])
    
    # Generate resources for all sessions
    session_resources = generate_session_resources(PERPLEXITY_API_KEY, session_titles)
    # print("Session Resources are: \n", session_resources)
    resources = json.loads(session_resources)
    # print("Resources JSON is: \n", resources_json)
    
    # print("Session Resources are: \n", session_resources)

    # Create a mapping of session titles to their resources
    
    # Import Resources JSON
    # resources = {}
    # with open('sample_files/sample_course_resources.json', 'r') as file:
    #     resources = json.load(file)

    resources_map = {
        resource['session_title']: resource['resources']
        for resource in resources['session_resources']
    }
    print("Resources Map is: \n", resources_map)
    # print("Sample is: ", resources_map.get('Overview of ML Concepts, History, and Applications'));
    # Generate sessions with their corresponding resources
    all_sessions = []
    current_date = start_date
    
    for module in course_plan_json['modules']:
        for sub_module in module['sub_modules']:
            for topic in sub_module['topics']:
                session = create_session(
                    title=topic['title'],
                    date=current_date,
                    module_name=module['module_title'],
                    resources=resources_map.get(topic['title'], {})
                )
                all_sessions.append(session)
                current_date += timedelta(days=3.5)
    
    print("All Sessions are: \n", all_sessions)

def get_new_course_id():
    """Generate a new course ID by incrementing the last course ID"""
    last_course = courses_collection.find_one(sort=[("course_id", -1)])
    if last_course:
        last_course_id = int(last_course["course_id"][2:])
        new_course_id = f"CS{last_course_id + 1}"
    else:
        new_course_id = "CS101"
    return new_course_id

# if __name__ == "__main__":
#     course_name = "Introduction to Machine Learning"
#     start_date = datetime(2022, 9, 1)
#     duration_weeks = 4
#     create_course(course_name, start_date, duration_weeks, 3)