File size: 8,290 Bytes
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import new_research_paper
import research3
import entire_download
import streamlit as st
import os
import json
import requests
from dotenv import load_dotenv
from pymongo import MongoClient
from typing import Dict, Any
import research22
import keywords_database_download
import new_keywords
import infranew
import loldude
import new_research_paper
import research3
import entire_download
import sciclone
import extract

# Load environment variables
load_dotenv()
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_API_KEY")
PERPLEXITY_API_URL = "https://api.perplexity.ai/chat/completions"
MONGODB_URI = os.getenv(
    "MONGODB_UR",
    "mongodb+srv://milind:[email protected]/?retryWrites=true&w=majority&appName=Cluster0",
)

# MongoDB setup
client = MongoClient(MONGODB_URI)
db = client["novascholar_db"]


def search_papers(topic: str, num_papers: int, paper_type: str) -> str:
    headers = {
        "Authorization": f"Bearer {PERPLEXITY_API_KEY}",
        "Content-Type": "application/json",
    }

    attributes = {
        "Review Based Paper": [
            "Title",
            "Publication",
            "Journal_Conference",
            "Abstract",
            "Keywords",
            "Author",
            "Date_of_Publication",
            "Intro",
            "Literature_Review",
            "Body",
            "Protocol",
            "Search String",
            "Included Studies",
            "Data Collection and Analysis Methods",
            "Data Extraction Table",
            "Synthesis and Analysis",
            "Conclusion",
            "Limitations",
            "Results",
            "References",
            "Risk of Bias Assessment",
        ],
        "Opinion/Perspective Based Paper": [
            "Title",
            "Publication",
            "Journal_Conference",
            "Abstract",
            "Keywords",
            "Author",
            "Date_of_Publication",
            "Intro",
            "Literature_Review",
            "Introduction",
            "Body",
            "Results and Discussion",
            "Conclusion",
            "References",
        ],
        "Empirical Research Paper": [
            "Title",
            "Publication",
            "Journal_Conference",
            "Abstract",
            "Keywords",
            "Author",
            "Date_of_Publication",
            "Intro",
            "Literature_Review",
            "Introduction",
            "Body",
            "Methodology",
            "Participants",
            "Survey Instrument",
            "Data Collection",
            "Data Analysis",
            "Results and Discussion",
            "Conclusion",
            "References",
        ],
        "Research Paper (Other)": [
            "Title",
            "Publication",
            "Journal_Conference",
            "Abstract",
            "Keywords",
            "Author",
            "Date_of_Publication",
            "Intro",
            "Literature_Review",
            "Research_Models_Used",
            "Methodology",
            "Discussion",
            "Future_Scope",
            "Theory",
            "Independent_Variables",
            "nof_Independent_Variables",
            "Dependent_Variables",
            "nof_Dependent_Variables",
            "Control_Variables",
            "Extraneous_Variables",
            "nof_Control_Variables",
            "nof_Extraneous_Variables",
        ],
    }

    selected_attributes = attributes[paper_type]
    prompt = f"""Find {num_papers} recent research papers about {topic}.
    Return ONLY a valid JSON array with the following structure for each paper, no additional text:
    [{{
        {", ".join([f'"{attr}": "value"' for attr in selected_attributes])}
    }}]"""

    payload = {
        "model": "llama-3.1-sonar-small-128k-chat",
        "messages": [
            {
                "role": "system",
                "content": "You are a research paper analyzer that returns only valid JSON arrays.",
            },
            {"role": "user", "content": prompt},
        ],
        "temperature": 0.1,
    }

    try:
        response = requests.post(PERPLEXITY_API_URL, headers=headers, json=payload)
        response.raise_for_status()
        content = response.json()["choices"][0]["message"]["content"]

        # Clean response and ensure it's valid JSON
        content = content.strip()
        if not content.startswith("["):
            content = content[content.find("[") :]
        if not content.endswith("]"):
            content = content[: content.rfind("]") + 1]

        # Validate JSON
        papers = json.loads(content)
        if not isinstance(papers, list):
            raise ValueError("Response is not a JSON array")

        # Insert into MongoDB
        collection = db[paper_type.replace(" ", "_").lower()]
        if papers:
            collection.insert_many(papers)
            return content
        return "[]"

    except json.JSONDecodeError as e:
        st.error(f"Invalid JSON response: {str(e)}")
        return None
    except Exception as e:
        st.error(f"Error: {str(e)}")
        return None


def display_research_assistant_dashboard():
    #st.set_page_config(page_title="Research Papers", layout="wide")

   # st.title("Research Papers")

    # Sidebar radio
    option = st.sidebar.radio(
        "Select an option",
        [
            "Search Papers",
            "Upload Paper",
            "Single Keyword Search",
            "Multiple Keywords Search",
            "Knowledge Graph",
            "Cosine Similarity",
            "Paper Generator",
            "Paper from Topic",
            "Download Entire Corpus",
            "Research Copilot",
            "Research Paper Analysis Tool",
        ],
    )

    if option == "Search Papers":
        st.subheader("Search and Store Papers")

        topic = st.text_input("Enter research topic")
        num_papers = st.number_input(
            "Number of papers", min_value=1, max_value=10, value=5
        )
        paper_type = st.selectbox(
            "Select type of research paper",
            [
                "Review Based Paper",
                "Opinion/Perspective Based Paper",
                "Empirical Research Paper",
                "Research Paper (Other)",
            ],
        )

        if st.button("Search and Store"):
            if topic:
                with st.spinner(f"Searching and storing papers about {topic}..."):
                    results = search_papers(topic, num_papers, paper_type)
                    if results:
                        st.success(
                            f"Successfully stored {num_papers} papers in MongoDB"
                        )
                        # Display results
                        papers = json.loads(results)
                        for paper in papers:
                            with st.expander(paper["Title"]):
                                for key, value in paper.items():
                                    if key != "Title":
                                        st.write(f"**{key}:** {value}")
            else:
                st.warning("Please enter a research topic")

        # Add MongoDB connection status
        if st.sidebar.button("Check Database Connection"):
            try:
                client.admin.command("ping")
                print(MONGODB_URI)
                st.sidebar.success("Connected to MongoDB")
            except Exception as e:
                st.sidebar.error(f"MongoDB Connection Error: {str(e)}")
    elif option == "Single Keyword Search":
        keywords_database_download.main()
    elif option == "Multiple Keywords Search":
        new_keywords.main()
    elif option == "Knowledge Graph":
        infranew.main()
    elif option == "Cosine Similarity":
        loldude.main()
    elif option == "Paper Generator":
        new_research_paper.main()
    elif option == "Paper from Topic":
        research3.main()
    elif option == "Download Entire Corpus":
        entire_download.main()
    elif option == "Research Copilot":
        sciclone.main()
    elif option == "Research Paper Analysis Tool":
        extract.main()
    else:
        research22.main()


if __name__ == "__main__":
    display_research_assistant_dashboard()