File size: 23,361 Bytes
a62e756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e107ee4
9987aed
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf5bc29
e107ee4
 
 
 
 
a62e756
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf5bc29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9987aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e107ee4
 
 
 
 
 
 
 
 
 
0162dc3
e107ee4
 
 
 
 
 
 
 
 
 
a62e756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
a62e756
 
 
 
 
 
 
 
 
 
 
 
 
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9987aed
 
 
 
 
e107ee4
 
 
 
 
9987aed
 
 
 
 
 
 
e107ee4
 
9987aed
 
 
 
e107ee4
9987aed
 
 
e107ee4
 
9987aed
e107ee4
 
 
 
 
 
9987aed
 
 
e107ee4
 
 
 
 
 
 
 
 
 
a62e756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e107ee4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# import ast
# from pymongo import MongoClient
# from datetime import datetime
# import openai
# import google.generativeai as genai
# from google.generativeai import GenerativeModel
# from dotenv import load_dotenv
# import os
# from file_upload_vectorize import resources_collection, vectors_collection, courses_collection2, faculty_collection

# # Load environment variables
# load_dotenv()
# MONGO_URI = os.getenv('MONGO_URI')
# OPENAI_KEY = os.getenv('OPENAI_KEY')
# GEMINI_KEY = os.getenv('GEMINI_KEY')

# # Configure APIs
# openai.api_key = OPENAI_KEY
# genai.configure(api_key=GEMINI_KEY)
# model = genai.GenerativeModel('gemini-pro')

# # Connect to MongoDB
# client = MongoClient(MONGO_URI)
# db = client['novascholar_db']
# quizzes_collection = db["quizzes"]

# def strip_code_markers(response_text):
#     """Strip off the markers ``` and python from a LLM model's response"""
#     if response_text.startswith("```python"):
#         response_text = response_text[len("```python"):].strip()
#     if response_text.startswith("```"):
#         response_text = response_text[len("```"):].strip()
#     if response_text.endswith("```"):
#         response_text = response_text[:-len("```")].strip()
#     return response_text


# # New function to generate MCQs using Gemini
# def generate_mcqs(context, num_questions, session_title, session_description):
#     """Generate MCQs either from context or session details"""
#     try:
#         # Initialize Gemini model
#         if context:
#             prompt = f"""
#             Based on the following content, generate {num_questions} multiple choice questions.
#             Format each question as a Python dictionary with the following structure:
#             {{
#                 "question": "Question text here",
#                 "options": ["A) option1", "B) option2", "C) option3", "D) option4"],
#                 "correct_option": "A) option1" or "B) option2" or "C) option3" or "D) option4"
#             }}
            
#             Content:
#             {context}
            
#             Generate challenging but clear questions that test understanding of key concepts.
#             Return only the Python list of dictionaries.
#             """
#         else:
#             prompt = f"""
#             Generate {num_questions} multiple choice questions about the topic:
#             Title: {session_title}
#             Description: {session_description}
            
#             Format each question as a Python dictionary with the following structure:
#             {{
#                 "question": "Question text here",
#                 "options": ["A) option1", "B) option2", "C) option3", "D) option4"],
#                 "correct_option": "A" or "B" or "C" or "D"
#             }}
            
#             Generate challenging but clear questions.
#             Return only the Python list of dictionaries without any additional formatting or markers
#             Do not write any other text, do not start the response with (```python), do not end the response with backticks(```)
#             A Sample response should look like this: Response Text: [
#                 {
#                     "question": "Which of the following is NOT a valid data type in C++?",
#                     "options": ["int", "double", "boolean", "char"],
#                     "correct_option": "C"
#                 }
#             ] (Notice that there are no backticks(```) around the response and no (```python)) 
#             .
#             """
        
#         response = model.generate_content(prompt)
#         response_text = response.text.strip()
#         print("Response Text:", response_text)
#         modified_response_text = strip_code_markers(response_text)
#         print("Response Text Modified to:", modified_response_text)
#         # Extract and parse the response to get the list of MCQs
#         mcqs = ast.literal_eval(modified_response_text)  # Be careful with eval, consider using ast.literal_eval for production
#         print(mcqs)
#         if not mcqs:
#             raise ValueError("No questions generated")
#         return mcqs
#     except Exception as e:
#         print(f"Error generating MCQs: , error: {e}")
#         return None

# # New function to save quiz to database
# def save_quiz(course_id, session_id, title, questions, user_id):
#     """Save quiz to database"""
#     try:
#         quiz_data = {
#             "user_id": user_id,
#             "course_id": course_id,
#             "session_id": session_id,
#             "title": title,
#             "questions": questions,
#             "created_at": datetime.utcnow(),
#             "status": "active",
#             "submissions": []
#         }
#         result = quizzes_collection.insert_one(quiz_data)
#         return result.inserted_id
#     except Exception as e:
#         print(f"Error saving quiz: {e}")
#         return None
    

# def get_student_quiz_score(quiz_id, student_id):
#     """Get student's score for a specific quiz"""
#     quiz = quizzes_collection.find_one(
#         {
#             "_id": quiz_id,
#             "submissions.student_id": student_id
#         },
#         {"submissions.$": 1}
#     )
#     if quiz and quiz.get('submissions'):
#         return quiz['submissions'][0].get('score')
#     return None

# # def submit_quiz_answers(quiz_id, student_id, student_answers):
# #     """Submit and score student's quiz answers"""
# #     quiz = quizzes_collection.find_one({"_id": quiz_id})
# #     if not quiz:
# #         return None
    
# #     # Calculate score
# #     correct_answers = 0
# #     total_questions = len(quiz['questions'])
    
# #     for q_idx, question in enumerate(quiz['questions']):
# #         if student_answers.get(str(q_idx)) == question['correct_option']:
# #             correct_answers += 1
    
# #     score = (correct_answers / total_questions) * 100
    
# #     # Store submission
# #     submission_data = {
# #         "student_id": student_id,
# #         "answers": student_answers,
# #         "score": score,
# #         "submitted_at": datetime.utcnow()
# #     }
    
# #     # Update quiz with submission
# #     quizzes_collection.update_one(
# #         {"_id": quiz_id},
# #         {
# #             "$push": {"submissions": submission_data}
# #         }
# #     )
    
# #     return score
# def submit_quiz_answers(quiz_id, student_id, student_answers):
#     """Submit and score student's quiz answers"""
#     try:
#         quiz = quizzes_collection.find_one({"_id": quiz_id})
#         if not quiz:
#             return None
        
#         # Calculate score
#         correct_answers = 0
#         total_questions = len(quiz['questions'])
        
#         for q_idx, question in enumerate(quiz['questions']):
#             student_answer = student_answers.get(str(q_idx))
#             if student_answer:  # Only check if answer was provided
#                 # Extract the option letter (A, B, C, D) from the full answer string
#                 answer_letter = student_answer.split(')')[0].strip()
#                 if answer_letter == question['correct_option']:
#                     correct_answers += 1
        
#         score = (correct_answers / total_questions) * 100
        
#         # Store submission
#         submission_data = {
#             "student_id": student_id,
#             "answers": student_answers,
#             "score": score,
#             "submitted_at": datetime.utcnow()
#         }
        
#         # Update quiz with submission
#         result = quizzes_collection.update_one(
#             {"_id": quiz_id},
#             {"$push": {"submissions": submission_data}}
#         )
        
#         return score if result.modified_count > 0 else None
        
#     except Exception as e:
#         print(f"Error submitting quiz: {e}")
#         return None

import ast
from typing import Dict, List
from pymongo import MongoClient
from datetime import datetime
import openai
import google.generativeai as genai
from google.generativeai import GenerativeModel
from dotenv import load_dotenv
import os
from file_upload_vectorize import resources_collection, vectors_collection, courses_collection2, faculty_collection

# Load environment variables
load_dotenv()
MONGO_URI = os.getenv('MONGO_URI')
OPENAI_KEY = os.getenv('OPENAI_KEY')
GEMINI_KEY = os.getenv('GEMINI_KEY')

# Configure APIs
openai.api_key = OPENAI_KEY
genai.configure(api_key=GEMINI_KEY)
model = genai.GenerativeModel('gemini-1.5-flash')

# Connect to MongoDB
client = MongoClient(MONGO_URI)
db = client['novascholar_db']
quizzes_collection = db["quizzes"]
surprise_quizzes_collection = db["surprise_quizzes"]

def strip_code_markers(response_text):
    """Strip off the markers ``` and python from a LLM model's response"""
    if response_text.startswith("```python"):
        response_text = response_text[len("```python"):].strip()
    if response_text.startswith("```"):
        response_text = response_text[len("```"):].strip()
    if response_text.endswith("```"):
        response_text = response_text[:-len("```")].strip()
    return response_text


# New function to generate MCQs using Gemini
def generate_mcqs(context, num_questions, session_title, session_description):
    """Generate MCQs either from context or session details"""
    try:
        # Initialize Gemini model
        if context:
            prompt = f"""
            Based on the following content, generate {num_questions} multiple choice questions.
            Format each question as a Python dictionary with the following structure:
            {{
                "question": "Question text here",
                "options": ["A) option1", "B) option2", "C) option3", "D) option4"],
                "correct_option": "A) option1" or "B) option2" or "C) option3" or "D) option4"
            }}
            
            Content:
            {context}
            
            Generate challenging but clear questions that test understanding of key concepts.
            Return only the Python list of dictionaries.
            """
        else:
            prompt = f"""
            Generate {num_questions} multiple choice questions about the topic:
            Title: {session_title}
            Description: {session_description}
            
            Format each question as a Python dictionary with the following structure:
            {{
                "question": "Question text here",
                "options": ["A) option1", "B) option2", "C) option3", "D) option4"],
                "correct_option": "A" or "B" or "C" or "D"
            }}
            
            Generate challenging but clear questions.
            Return only the Python list of dictionaries without any additional formatting or markers
            Do not write any other text, do not start the response with (```python), do not end the response with backticks(```)
            A Sample response should look like this: Response Text: [
                {
                    "question": "Which of the following is NOT a valid data type in C++?",
                    "options": ["int", "double", "boolean", "char"],
                    "correct_option": "C"
                }
            ] (Notice that there are no backticks(```) around the response and no (```python)) 
            .
            """
        
        response = model.generate_content(prompt)
        response_text = response.text.strip()
        print("Response Text:", response_text)
        modified_response_text = strip_code_markers(response_text)
        print("Response Text Modified to:", modified_response_text)
        # Extract and parse the response to get the list of MCQs
        mcqs = ast.literal_eval(modified_response_text)  # Be careful with eval, consider using ast.literal_eval for production
        print(mcqs)
        if not mcqs:
            raise ValueError("No questions generated")
        return mcqs
    except Exception as e:
        print(f"Error generating MCQs: , error: {e}")
        return None

def generate_pre_class_question_bank(context: str, session_title: str, session_description: str) -> List[Dict]:
    """Generate a bank of 40 MCQ questions for pre-class quiz"""
    try:
        prompt = f"""
        Based on the following content, generate 50 multiple choice questions for a question bank.
        Format each question as a Python dictionary with this exact structure:
        {{
            "question": "Question text here",
            "options": ["A) option1", "B) option2", "C) option3", "D) option4"],
            "correct_option": "A) option1" or "B) option2" or "C) option3" or "D) option4",
            "difficulty": "easy|medium|hard",
            "topic": "specific topic from content"
        }}
        
        Content:
        {context}
        
        Session Title: {session_title}
        Description: {session_description}
        
        Requirements:
        1. Questions should cover all important concepts
        2. Mix of easy (20%), medium (50%), and hard (30%) questions
        3. Clear and unambiguous questions
        4. Options should be plausible but only one correct answer
        5. Include topic tags for categorization
        6. **NUMBER OF QUESTIONS SHOULD BE GREATER THAN OR EQUAL TO 60**
        
        Return ONLY the JSON array of questions.
        """
        
        response = model.generate_content(
            prompt,
            generation_config=genai.GenerationConfig(
                # temperature=0.7,
                response_mime_type="application/json"
            )
        )
        response_text = response.text.strip()
        modified_response_text = strip_code_markers(response_text)
        question_bank = ast.literal_eval(modified_response_text)
        print(question_bank)
        # Validate question bank
        if not isinstance(question_bank, list):
            raise ValueError("Invalid question bank format or count")
            
        return question_bank
        
    except Exception as e:
        print(f"Error generating question bank: {e}")
        return None


def save_pre_class_quiz_with_bank(
    course_id: str, 
    session_id: str, 
    title: str, 
    question_bank: List[Dict],
    num_questions: int,
    duration: int,
    user_id: str
) -> str:
    """Save pre-class quiz with question bank to database"""
    try:
        quiz_data = {
            "user_id": user_id,
            "course_id": course_id,
            "session_id": session_id,
            "title": title,
            "question_bank": question_bank,
            "num_questions": num_questions,
            "duration_minutes": duration,
            "created_at": datetime.now(),
            "status": "active",
            "submissions": [],
            "quiz_type": "pre_class"
        }
        result = quizzes_collection.insert_one(quiz_data)
        return result.inserted_id
    except Exception as e:
        print(f"Error saving quiz with question bank: {e}")
        return None

def get_randomized_questions(quiz_id) -> List[Dict]:
    """Get randomly selected questions from question bank based on quiz settings"""
    try:
        quiz = quizzes_collection.find_one({"_id": quiz_id})
        if not quiz:
            return None
        
        num_questions = quiz.get("num_questions", 0)
        question_bank = quiz.get("question_bank", [])
        
        if not question_bank or num_questions <= 0:
            return None
            
        # Randomly select questions
        import random
        selected_questions = random.sample(question_bank, num_questions)
        
        return selected_questions
        
    except Exception as e:
        print(f"Error getting randomized questions: {e}")
        return None


def save_pre_class_quiz(course_id: str, session_id: str, title: str, questions: List[Dict], user_id: str, duration: int):
    """Save pre-class quiz to database"""
    try:
        quiz_data = {
            "user_id": user_id,
            "course_id": course_id,
            "session_id": session_id,
            "title": title,
            "questions": questions,
            "created_at": datetime.now(),
            "status": "active",
            "submissions": [],
            "duration_minutes": duration,
            "quiz_type": "pre_class"
        }
        result = quizzes_collection.insert_one(quiz_data)
        return result.inserted_id
    except Exception as e:
        print(f"Error saving quiz: {e}")
        return None

# New function to save quiz to database
def save_quiz(course_id, session_id, title, questions, user_id):
    """Save quiz to database"""
    try:
        quiz_data = {
            "user_id": user_id,
            "course_id": course_id,
            "session_id": session_id,
            "title": title,
            "questions": questions,
            "duration_minutes": 15,
            "created_at": datetime.utcnow(),
            "status": "active",
            "submissions": []
        }
        result = quizzes_collection.insert_one(quiz_data)
        return result.inserted_id
    except Exception as e:
        print(f"Error saving quiz: {e}")
        return None
    
def save_surprise_quiz(course_id, session_id, title, questions, user_id, no_minutes):
    """Save quiz to database"""
    try:
        quiz_data = {
            "user_id": user_id,
            "course_id": course_id,
            "session_id": session_id,
            "title": title,
            "questions": questions,
            "created_at": datetime.now(),
            "status": "active",
            "submissions": [],
            "no_minutes": no_minutes
        }
        result = surprise_quizzes_collection.insert_one(quiz_data)
        return result.inserted_id
    except Exception as e:
        print(f"Error saving quiz: {e}")
        return None
    

def get_student_quiz_score(quiz_id, student_id):
    """Get student's score for a specific quiz"""
    quiz = quizzes_collection.find_one(
        {
            "_id": quiz_id,
            "submissions.student_id": student_id
        },
        {"submissions.$": 1}
    )
    if quiz and quiz.get('submissions'):
        return quiz['submissions'][0].get('score')
    return None

def get_student_surprise_quiz_score(quiz_id, student_id):
    """Get student's score for a specific quiz"""
    quiz = surprise_quizzes_collection.find_one(
        {
            "_id": quiz_id,
            "submissions.student_id": student_id
        },
        {"submissions.$": 1}
    )
    if quiz and quiz.get('submissions'):
        return quiz['submissions'][0].get('score')
    return None

# def submit_quiz_answers(quiz_id, student_id, student_answers):
#     """Submit and score student's quiz answers"""
#     quiz = quizzes_collection.find_one({"_id": quiz_id})
#     if not quiz:
#         return None
    
#     # Calculate score
#     correct_answers = 0
#     total_questions = len(quiz['questions'])
    
#     for q_idx, question in enumerate(quiz['questions']):
#         if student_answers.get(str(q_idx)) == question['correct_option']:
#             correct_answers += 1
    
#     score = (correct_answers / total_questions) * 100
    
#     # Store submission
#     submission_data = {
#         "student_id": student_id,
#         "answers": student_answers,
#         "score": score,
#         "submitted_at": datetime.utcnow()
#     }
    
#     # Update quiz with submission
#     quizzes_collection.update_one(
#         {"_id": quiz_id},
#         {
#             "$push": {"submissions": submission_data}
#         }
#     )
    
#     return score
def submit_quiz_answers(quiz_id, student_id, student_answers):
    """Submit and score student's quiz answers"""
    try:
        quiz = quizzes_collection.find_one({"_id": quiz_id})
        if not quiz:
            return None
        
        total_questions = len(quiz['questions'])
        # Debug logging
        print("\nScoring Debug:")
        print(f"Total questions: {total_questions}")

        # Calculate score
        correct_answers = 0
        
        for q_idx, question in enumerate(quiz['questions']):
            student_answer = student_answers.get(str(q_idx))
            correct_option = question['correct_option']

            # Debug logging
            print(f"\nQuestion {q_idx + 1}:")
            print(f"Student answer: {student_answer}")
            print(f"Correct option: {correct_option}")

            if student_answer:  # Only check if answer was provided
                # Extract the option letter (A, B, C, D) from the full answer string
                # answer_letter = student_answer.split(')')[0].strip()
                # if answer_letter == question['correct_option']:
                #     correct_answers += 1
                if student_answer == correct_option:
                    correct_answers += 1
                    print(f"✓ Correct! Total correct: {correct_answers}")
                else:
                    print("✗ Incorrect")
        
        score = (correct_answers / total_questions) * 100
        print(f"\nFinal Score: {score}% ({correct_answers}/{total_questions} correct)")
        
        # Store submission
        submission_data = {
            "student_id": student_id,
            "answers": student_answers,
            "score": score,
            "submitted_at": datetime.utcnow(),
            "correct_answers_count": correct_answers,
            "total_questions": total_questions
        }
        
        # Update quiz with submission
        result = quizzes_collection.update_one(
            {"_id": quiz_id},
            {"$push": {"submissions": submission_data}}
        )
        
        return score if result.modified_count > 0 else None
        
    except Exception as e:
        print(f"Error submitting quiz: {e}")
        return None
    
def submit_surprise_quiz_answers(quiz_id, student_id, student_answers):
    """Submit and score student's quiz answers"""
    try:
        quiz = surprise_quizzes_collection.find_one({"_id": quiz_id})
        if not quiz:
            return None
        
        # Calculate score
        correct_answers = 0
        total_questions = len(quiz['questions'])
        
        for q_idx, question in enumerate(quiz['questions']):
            student_answer = student_answers.get(str(q_idx))
            if student_answer:  # Only check if answer was provided
                # Extract the option letter (A, B, C, D) from the full answer string
                answer_letter = student_answer.split(')')[0].strip()
                if answer_letter == question['correct_option']:
                    correct_answers += 1
        
        score = (correct_answers / total_questions) * 100
        
        # Store submission
        submission_data = {
            "student_id": student_id,
            "answers": student_answers,
            "score": score,
            "submitted_at": datetime.utcnow()
        }
        
        # Update quiz with submission
        result = surprise_quizzes_collection.update_one(
            {"_id": quiz_id},
            {"$push": {"submissions": submission_data}}
        )
        
        return score if result.modified_count > 0 else None
        
    except Exception as e:
        print(f"Error submitting quiz: {e}")
        return None