File size: 12,693 Bytes
e107ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# import streamlit as st
# from openai import OpenAI
# import os
# from dotenv import load_dotenv
# from llama_index.core import (
# VectorStoreIndex,
# SimpleDirectoryReader,
# Document,
# GPTVectorStoreIndex,
# )
# from bson import ObjectId
# import requests
# import openai
# import numpy as np
# from pymongo import MongoClient
# from bson import ObjectId
# from datetime import datetime
# from llama_index.embeddings.openai import OpenAIEmbedding
# from typing import List, Dict
# # Initialize Perplexity API and OpenAI API
# load_dotenv()
# perplexity_api_key = os.getenv("PERPLEXITY_KEY")
# openai.api_key = os.getenv("OPENAI_KEY")
# # MongoDB setup
# MONGO_URI = os.getenv("MONGO_URI")
# client = MongoClient(MONGO_URI)
# db = client["novascholar_db"]
# research_papers_collection = db["research_papers"]
# def fetch_perplexity_data(api_key, topic):
# """
# Fetch research papers data from Perplexity API with proper formatting
# """
# headers = {
# "accept": "application/json",
# "content-type": "application/json",
# "authorization": f"Bearer {api_key}",
# }
# # Structured prompt to get properly formatted response
# messages = [
# {
# "role": "system",
# "content": """You are a research paper retrieval expert. For the given topic, return exactly 10 research papers in the following format:
# Title: Paper Title
# Authors: Author 1, Author 2
# Year: YYYY
# Content: Detailed paper content with abstract and key findings
# URL: DOI or paper URL
# """,
# },
# {"role": "user", "content": f"Find 10 research papers about: {topic}"},
# ]
# try:
# client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
# response = client.chat.completions.create(
# model="llama-3.1-sonar-small-128k-chat", # Use the best Perplexity model
# messages=messages,
# )
# # Extract and validate response
# content = response.choices[0].message.content
# st.write("Fetched Data:", content) # Debugging line to check the fetched data
# return content
# except Exception as e:
# st.error(f"Failed to fetch data from Perplexity API: {str(e)}")
# return ""
# def split_and_vectorize_papers(content: str) -> List[Dict]:
# """Split and vectorize papers using OpenAI embeddings"""
# papers = content.split("\n\n")
# # Initialize OpenAI client
# # client = OpenAI() # Uses api_key from environment variable
# vectors = []
# for paper in papers:
# try:
# # Get embedding using OpenAI's API directly
# response = openai.embeddings.create(
# model="text-embedding-ada-002", input=paper, encoding_format="float"
# )
# # Extract embedding from response
# embedding = response.data[0].embedding
# vectors.append(
# {"content": paper, "vector": embedding, "timestamp": datetime.utcnow()}
# )
# except Exception as e:
# st.error(f"Error vectorizing paper: {str(e)}")
# continue
# return vectors
# def store_papers_in_mongodb(papers):
# """Store papers with vectors in MongoDB"""
# try:
# for paper in papers:
# # Prepare MongoDB document
# mongo_doc = {
# "content": paper["content"],
# "vector": paper["vector"],
# "created_at": datetime.utcnow(),
# }
# # Insert into MongoDB
# db.papers.update_one(
# {"content": paper["content"]}, {"$set": mongo_doc}, upsert=True
# )
# st.success(f"Stored {len(papers)} papers in database")
# return True
# except Exception as e:
# st.error(f"Error storing papers: {str(e)}")
# def get_research_papers(query):
# """
# Get and store research papers with improved error handling
# """
# # Fetch papers from Perplexity
# content = fetch_perplexity_data(perplexity_api_key, query)
# if not content:
# return []
# # Split and vectorize papers
# papers = split_and_vectorize_papers(content)
# # Store papers in MongoDB
# if store_papers_in_mongodb(papers):
# return papers
# else:
# st.warning("Failed to store papers in database, but returning fetched results")
# return papers
# def analyze_research_gaps(papers):
# """
# Analyze research gaps with improved prompt and error handling
# """
# if not papers:
# return "No papers provided for analysis"
# # Prepare paper summaries for analysis
# paper_summaries = "\n\n".join(
# [
# f"Key Findings: {paper['content'][:500]}..."
# # f"Title: {paper['title']}\nYear: {paper['year']}\nKey Findings: {paper['content'][:500]}..."
# for paper in papers
# ]
# )
# headers = {
# "Authorization": f"Bearer {perplexity_api_key}",
# "Content-Type": "application/json",
# }
# data = {
# "messages": [
# {
# "role": "system",
# "content": "You are a research analysis expert. Identify specific research gaps and future research directions based on the provided papers. Format your response with clear sections: Current State, Identified Gaps, and Future Directions.",
# },
# {
# "role": "user",
# "content": f"Analyze these papers and identify research gaps:\n\n{paper_summaries}",
# },
# ]
# }
# try:
# client = OpenAI(
# api_key=perplexity_api_key, base_url="https://api.perplexity.ai"
# )
# response = client.chat.completions.create(
# model="llama-3.1-sonar-small-128k-chat", # Use the best Perplexity model
# messages=data["messages"],
# )
# return response.choices[0].message.content
# except Exception as e:
# st.error(f"Failed to analyze research gaps: {str(e)}")
# return "Error analyzing research gaps"
# def create_research_paper(gaps, topic, papers):
# """
# Create a research paper that addresses the identified gaps using Perplexity API
# """
# full_texts = "\n\n".join([paper["content"] for paper in papers])
# headers = {
# "Authorization": f"Bearer {perplexity_api_key}",
# "Content-Type": "application/json",
# }
# data = {
# "messages": [
# {
# "role": "system",
# "content": "You are a research paper generation expert. Create a comprehensive research paper that addresses the identified gaps based on the provided papers. Format your response with clear sections: Introduction, Literature Review, Methodology, Results, Discussion, Conclusion, and References.",
# },
# {
# "role": "user",
# "content": f"Create a research paper on the topic '{topic}' that addresses the following research gaps:\n\n{gaps}\n\nBased on the following papers:\n\n{full_texts}",
# },
# ]
# }
# try:
# client = OpenAI(
# api_key=perplexity_api_key, base_url="https://api.perplexity.ai"
# )
# response = client.chat.completions.create(
# model="llama-3.1-sonar-small-128k-chat", # Use the best Perplexity model
# messages=data["messages"],
# )
# return response.choices[0].message.content
# except Exception as e:
# st.error(f"Failed to create research paper: {str(e)}")
# return "Error creating research paper"
# def cosine_similarity(vec1, vec2):
# """Calculate the cosine similarity between two vectors"""
# vec1 = np.array(vec1)
# vec2 = np.array(vec2)
# return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
# def calculate_cosine_similarity(vec1: List[float], vec2: List[float]) -> float:
# """Calculate cosine similarity between two vectors"""
# return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
# def display_research_assistant_dashboard():
# """Display research assistant dashboard"""
# # Initialize session state for recommendations
# if "recommendations" not in st.session_state:
# st.session_state.recommendations = None
# if "vectors" not in st.session_state:
# st.session_state.vectors = None
# if "generated_paper" not in st.session_state:
# st.session_state.generated_paper = None
# # Sidebar
# with st.sidebar:
# st.title(f"Welcome, {st.session_state.username}")
# if st.button("Logout", use_container_width=True):
# for key in st.session_state.keys():
# del st.session_state[key]
# st.rerun()
# # Main content
# st.title("Research Paper Recommendations")
# search_query = st.text_input("Enter research topic:")
# col1, col2 = st.columns(2)
# with col1:
# if st.button("Get Research Papers"):
# if search_query:
# with st.spinner("Fetching recommendations..."):
# st.session_state.recommendations = get_research_papers(search_query)
# st.session_state.vectors = [
# paper["vector"] for paper in st.session_state.recommendations
# ]
# st.markdown(
# "\n\n".join(
# [
# f"**{i+1}.**\n{paper['content']}"
# # f"**{i+1}. {paper['title']}**\n{paper['content']}"
# for i, paper in enumerate(
# st.session_state.recommendations
# )
# ]
# )
# )
# else:
# st.warning("Please enter a search query")
# with col2:
# if st.button("Analyze Research Gaps"):
# if st.session_state.recommendations:
# with st.spinner("Analyzing research gaps..."):
# gaps = analyze_research_gaps(st.session_state.recommendations)
# st.session_state.generated_paper = create_research_paper(
# gaps, search_query, st.session_state.recommendations
# )
# st.markdown("### Potential Research Gaps")
# st.markdown(gaps)
# else:
# st.warning("Please get research papers first")
# if st.button("Save and Vectorize"):
# if st.session_state.generated_paper:
# try:
# # Initialize OpenAI client
# # Get embedding for generated paper
# response = openai.embeddings.create(
# model="text-embedding-ada-002",
# input=st.session_state.generated_paper,
# encoding_format="float",
# )
# generated_vector = response.data[0].embedding
# # Calculate similarities with stored vectors
# similarities = [
# calculate_cosine_similarity(generated_vector, paper_vector)
# for paper_vector in st.session_state.vectors
# ]
# # Display results
# st.markdown("### Generated Research Paper")
# st.markdown(st.session_state.generated_paper)
# st.markdown("### Cosine Similarities with Original Papers")
# for i, similarity in enumerate(similarities):
# st.metric(
# f"Paper {i+1}",
# value=f"{similarity:.3f}",
# help="Cosine similarity (1.0 = identical, 0.0 = completely different)",
# )
# except Exception as e:
# st.error(f"Error during vectorization: {str(e)}")
# else:
# st.warning("Please analyze research gaps first")
# # Run the dashboard
# if __name__ == "__main__":
# display_research_assistant_dashboard()
import research_combine2
# if __name__ == "__main__":
# display_research_assistant_dashboard()
def display_research_assistant_dashboard():
research_combine2.display_research_assistant_dashboard()
|