File size: 12,693 Bytes
e107ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# import streamlit as st
# from openai import OpenAI
# import os
# from dotenv import load_dotenv
# from llama_index.core import (
#     VectorStoreIndex,
#     SimpleDirectoryReader,
#     Document,
#     GPTVectorStoreIndex,
# )
# from bson import ObjectId
# import requests
# import openai
# import numpy as np
# from pymongo import MongoClient
# from bson import ObjectId
# from datetime import datetime
# from llama_index.embeddings.openai import OpenAIEmbedding
# from typing import List, Dict

# # Initialize Perplexity API and OpenAI API
# load_dotenv()
# perplexity_api_key = os.getenv("PERPLEXITY_KEY")
# openai.api_key = os.getenv("OPENAI_KEY")

# # MongoDB setup
# MONGO_URI = os.getenv("MONGO_URI")
# client = MongoClient(MONGO_URI)
# db = client["novascholar_db"]
# research_papers_collection = db["research_papers"]


# def fetch_perplexity_data(api_key, topic):
#     """
#     Fetch research papers data from Perplexity API with proper formatting
#     """
#     headers = {
#         "accept": "application/json",
#         "content-type": "application/json",
#         "authorization": f"Bearer {api_key}",
#     }

#     # Structured prompt to get properly formatted response
#     messages = [
#         {
#             "role": "system",
#             "content": """You are a research paper retrieval expert. For the given topic, return exactly 10 research papers in the following format:
#             Title: Paper Title
#             Authors: Author 1, Author 2
#             Year: YYYY
#             Content: Detailed paper content with abstract and key findings
#             URL: DOI or paper URL
#             """,
#         },
#         {"role": "user", "content": f"Find 10 research papers about: {topic}"},
#     ]

#     try:
#         client = OpenAI(api_key=api_key, base_url="https://api.perplexity.ai")
#         response = client.chat.completions.create(
#             model="llama-3.1-sonar-small-128k-chat",  # Use the best Perplexity model
#             messages=messages,
#         )

#         # Extract and validate response
#         content = response.choices[0].message.content
#         st.write("Fetched Data:", content)  # Debugging line to check the fetched data

#         return content

#     except Exception as e:
#         st.error(f"Failed to fetch data from Perplexity API: {str(e)}")
#         return ""


# def split_and_vectorize_papers(content: str) -> List[Dict]:
#     """Split and vectorize papers using OpenAI embeddings"""
#     papers = content.split("\n\n")

#     # Initialize OpenAI client
#     # client = OpenAI()  # Uses api_key from environment variable
#     vectors = []

#     for paper in papers:
#         try:
#             # Get embedding using OpenAI's API directly
#             response = openai.embeddings.create(
#                 model="text-embedding-ada-002", input=paper, encoding_format="float"
#             )

#             # Extract embedding from response
#             embedding = response.data[0].embedding

#             vectors.append(
#                 {"content": paper, "vector": embedding, "timestamp": datetime.utcnow()}
#             )

#         except Exception as e:
#             st.error(f"Error vectorizing paper: {str(e)}")
#             continue

#     return vectors


# def store_papers_in_mongodb(papers):
#     """Store papers with vectors in MongoDB"""
#     try:
#         for paper in papers:
#             # Prepare MongoDB document
#             mongo_doc = {
#                 "content": paper["content"],
#                 "vector": paper["vector"],
#                 "created_at": datetime.utcnow(),
#             }

#             # Insert into MongoDB
#             db.papers.update_one(
#                 {"content": paper["content"]}, {"$set": mongo_doc}, upsert=True
#             )

#         st.success(f"Stored {len(papers)} papers in database")
#         return True
#     except Exception as e:
#         st.error(f"Error storing papers: {str(e)}")


# def get_research_papers(query):
#     """
#     Get and store research papers with improved error handling
#     """
#     # Fetch papers from Perplexity
#     content = fetch_perplexity_data(perplexity_api_key, query)

#     if not content:
#         return []

#     # Split and vectorize papers
#     papers = split_and_vectorize_papers(content)

#     # Store papers in MongoDB
#     if store_papers_in_mongodb(papers):
#         return papers
#     else:
#         st.warning("Failed to store papers in database, but returning fetched results")
#         return papers


# def analyze_research_gaps(papers):
#     """
#     Analyze research gaps with improved prompt and error handling
#     """
#     if not papers:
#         return "No papers provided for analysis"

#     # Prepare paper summaries for analysis
#     paper_summaries = "\n\n".join(
#         [
#             f"Key Findings: {paper['content'][:500]}..."
#             # f"Title: {paper['title']}\nYear: {paper['year']}\nKey Findings: {paper['content'][:500]}..."
#             for paper in papers
#         ]
#     )

#     headers = {
#         "Authorization": f"Bearer {perplexity_api_key}",
#         "Content-Type": "application/json",
#     }

#     data = {
#         "messages": [
#             {
#                 "role": "system",
#                 "content": "You are a research analysis expert. Identify specific research gaps and future research directions based on the provided papers. Format your response with clear sections: Current State, Identified Gaps, and Future Directions.",
#             },
#             {
#                 "role": "user",
#                 "content": f"Analyze these papers and identify research gaps:\n\n{paper_summaries}",
#             },
#         ]
#     }

#     try:
#         client = OpenAI(
#             api_key=perplexity_api_key, base_url="https://api.perplexity.ai"
#         )
#         response = client.chat.completions.create(
#             model="llama-3.1-sonar-small-128k-chat",  # Use the best Perplexity model
#             messages=data["messages"],
#         )
#         return response.choices[0].message.content

#     except Exception as e:
#         st.error(f"Failed to analyze research gaps: {str(e)}")
#         return "Error analyzing research gaps"


# def create_research_paper(gaps, topic, papers):
#     """
#     Create a research paper that addresses the identified gaps using Perplexity API
#     """
#     full_texts = "\n\n".join([paper["content"] for paper in papers])
#     headers = {
#         "Authorization": f"Bearer {perplexity_api_key}",
#         "Content-Type": "application/json",
#     }
#     data = {
#         "messages": [
#             {
#                 "role": "system",
#                 "content": "You are a research paper generation expert. Create a comprehensive research paper that addresses the identified gaps based on the provided papers. Format your response with clear sections: Introduction, Literature Review, Methodology, Results, Discussion, Conclusion, and References.",
#             },
#             {
#                 "role": "user",
#                 "content": f"Create a research paper on the topic '{topic}' that addresses the following research gaps:\n\n{gaps}\n\nBased on the following papers:\n\n{full_texts}",
#             },
#         ]
#     }
#     try:
#         client = OpenAI(
#             api_key=perplexity_api_key, base_url="https://api.perplexity.ai"
#         )
#         response = client.chat.completions.create(
#             model="llama-3.1-sonar-small-128k-chat",  # Use the best Perplexity model
#             messages=data["messages"],
#         )
#         return response.choices[0].message.content

#     except Exception as e:
#         st.error(f"Failed to create research paper: {str(e)}")
#         return "Error creating research paper"


# def cosine_similarity(vec1, vec2):
#     """Calculate the cosine similarity between two vectors"""
#     vec1 = np.array(vec1)
#     vec2 = np.array(vec2)
#     return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))


# def calculate_cosine_similarity(vec1: List[float], vec2: List[float]) -> float:
#     """Calculate cosine similarity between two vectors"""
#     return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))


# def display_research_assistant_dashboard():
#     """Display research assistant dashboard"""
#     # Initialize session state for recommendations
#     if "recommendations" not in st.session_state:
#         st.session_state.recommendations = None
#     if "vectors" not in st.session_state:
#         st.session_state.vectors = None
#     if "generated_paper" not in st.session_state:
#         st.session_state.generated_paper = None

#     # Sidebar
#     with st.sidebar:
#         st.title(f"Welcome, {st.session_state.username}")
#         if st.button("Logout", use_container_width=True):
#             for key in st.session_state.keys():
#                 del st.session_state[key]
#             st.rerun()

#     # Main content
#     st.title("Research Paper Recommendations")
#     search_query = st.text_input("Enter research topic:")
#     col1, col2 = st.columns(2)
#     with col1:
#         if st.button("Get Research Papers"):
#             if search_query:
#                 with st.spinner("Fetching recommendations..."):
#                     st.session_state.recommendations = get_research_papers(search_query)
#                     st.session_state.vectors = [
#                         paper["vector"] for paper in st.session_state.recommendations
#                     ]
#                     st.markdown(
#                         "\n\n".join(
#                             [
#                                 f"**{i+1}.**\n{paper['content']}"
#                                 # f"**{i+1}. {paper['title']}**\n{paper['content']}"
#                                 for i, paper in enumerate(
#                                     st.session_state.recommendations
#                                 )
#                             ]
#                         )
#                     )
#             else:
#                 st.warning("Please enter a search query")
#     with col2:
#         if st.button("Analyze Research Gaps"):
#             if st.session_state.recommendations:
#                 with st.spinner("Analyzing research gaps..."):
#                     gaps = analyze_research_gaps(st.session_state.recommendations)
#                     st.session_state.generated_paper = create_research_paper(
#                         gaps, search_query, st.session_state.recommendations
#                     )
#                     st.markdown("### Potential Research Gaps")
#                     st.markdown(gaps)
#             else:
#                 st.warning("Please get research papers first")

#     if st.button("Save and Vectorize"):
#         if st.session_state.generated_paper:
#             try:
#                 # Initialize OpenAI client

#                 # Get embedding for generated paper
#                 response = openai.embeddings.create(
#                     model="text-embedding-ada-002",
#                     input=st.session_state.generated_paper,
#                     encoding_format="float",
#                 )
#                 generated_vector = response.data[0].embedding

#                 # Calculate similarities with stored vectors
#                 similarities = [
#                     calculate_cosine_similarity(generated_vector, paper_vector)
#                     for paper_vector in st.session_state.vectors
#                 ]

#                 # Display results
#                 st.markdown("### Generated Research Paper")
#                 st.markdown(st.session_state.generated_paper)

#                 st.markdown("### Cosine Similarities with Original Papers")
#                 for i, similarity in enumerate(similarities):
#                     st.metric(
#                         f"Paper {i+1}",
#                         value=f"{similarity:.3f}",
#                         help="Cosine similarity (1.0 = identical, 0.0 = completely different)",
#                     )

#             except Exception as e:
#                 st.error(f"Error during vectorization: {str(e)}")
#         else:
#             st.warning("Please analyze research gaps first")


# # Run the dashboard
# if __name__ == "__main__":
#     display_research_assistant_dashboard()

import research_combine2
# if __name__ == "__main__":
#     display_research_assistant_dashboard()
def display_research_assistant_dashboard():
    research_combine2.display_research_assistant_dashboard()