File size: 14,270 Bytes
4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 e107ee4 4eba3d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# import streamlit as st
# import pandas as pd
# import requests
# import json
# import os
# from dotenv import load_dotenv
# # Load environment variables
# load_dotenv()
# PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_API_KEY")
# PERPLEXITY_API_URL = "https://api.perplexity.ai/chat/completions"
# def call_perplexity_api(prompt: str) -> str:
# """Call Perplexity AI with a prompt, return the text response if successful."""
# headers = {
# "Authorization": f"Bearer {PERPLEXITY_API_KEY}",
# "Content-Type": "application/json",
# }
# payload = {
# "model": "llama-3.1-sonar-small-128k-chat",
# "messages": [{"role": "user", "content": prompt}],
# "temperature": 0.3,
# }
# try:
# response = requests.post(PERPLEXITY_API_URL, headers=headers, json=payload)
# response.raise_for_status()
# return response.json()["choices"][0]["message"]["content"]
# except Exception as e:
# st.error(f"API Error: {str(e)}")
# return ""
# def generate_research_paper(df: pd.DataFrame) -> dict:
# """
# For each column in the DataFrame, generate a research paper section (200-500 words)
# that addresses the data in that column. Return a dict mapping column -> text.
# """
# paper_sections = {}
# for col in df.columns:
# # Convert all non-null rows in the column to strings and join them for context
# col_values = df[col].dropna().astype(str).tolist()
# # We'll truncate if this is huge
# sample_text = " | ".join(col_values[:50]) # limit to first 50 rows for brevity
# prompt = f"""
# Topic: {col}
# Data Sample: {sample_text}
# Generate a professional research paper section for the above column.
# The section should be at least 100 words and at most 150 words,
# focusing on key insights, challenges, and potential research angles.
# Integrate the data samples as context for the content.
# """
# section_text = call_perplexity_api(prompt)
# paper_sections[col] = section_text.strip() if section_text else ""
# return paper_sections
# def format_paper(paper_dict: dict) -> str:
# """
# Format the generated paper into a Markdown string.
# Each column name is used as a heading, and the text is placed under it.
# """
# md_text = "# Generated Research Paper\n\n"
# for col, content in paper_dict.items():
# md_text += f"## {col}\n{content}\n\n"
# return md_text
# def main():
# st.title("Corpus-based Research Paper Generator")
# uploaded_file = st.file_uploader("Upload CSV corpus file", type="csv")
# if uploaded_file:
# df = pd.read_csv(uploaded_file)
# st.write("### Preview of Uploaded Data")
# st.dataframe(df.head())
# if st.button("Generate Research Paper"):
# st.info("Generating paper based on the columns of your corpus...")
# with st.spinner("Calling Perplexity AI..."):
# paper = generate_research_paper(df)
# if paper:
# formatted_paper = format_paper(paper)
# st.success("Research Paper Generated Successfully!")
# st.write(formatted_paper)
# st.download_button(
# label="Download Paper as Markdown",
# data=formatted_paper,
# file_name="research_paper.md",
# mime="text/markdown",
# )
# else:
# st.error(
# "Paper generation failed. Please check Perplexity API key."
# )
# if __name__ == "__main__":
# main()
import streamlit as st
import pandas as pd
import requests
import json
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_API_KEY")
PERPLEXITY_API_URL = "https://api.perplexity.ai/chat/completions"
def call_perplexity_api(prompt: str) -> str:
"""Call Perplexity AI with a prompt, return the text response if successful."""
headers = {
"Authorization": f"Bearer {PERPLEXITY_API_KEY}",
"Content-Type": "application/json",
}
payload = {
"model": "llama-3.1-sonar-small-128k-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.3,
}
try:
response = requests.post(PERPLEXITY_API_URL, headers=headers, json=payload)
response.raise_for_status()
return response.json()["choices"][0]["message"]["content"]
except Exception as e:
st.error(f"API Error: {str(e)}")
return ""
# def generate_research_paper(df: pd.DataFrame) -> dict:
# """
# For each column in the DataFrame, generate a research paper section (200-500 words)
# that addresses the data in that column. Return a dict mapping column -> text.
# """
# paper_sections = {}
# for col in df.columns:
# # Convert all non-null rows in the column to strings and join them for context
# col_values = df[col].dropna().astype(str).tolist()
# # We'll truncate if this is huge
# sample_text = " | ".join(col_values[:50]) # limit to first 50 rows for brevity
# prompt = f"""
# Topic: {col}
# Data Sample: {sample_text}
# Generate a professional research paper section for the above column.
# The section should be at least 100 words and at most 150 words,
# focusing on key insights, challenges, and potential research angles.
# Integrate the data samples as context for the content.
# """
# section_text = call_perplexity_api(prompt)
# paper_sections[col] = section_text.strip() if section_text else ""
# return paper_sections
# def format_paper(paper_dict: dict) -> str:
# """
# Format the generated paper into a Markdown string.
# Each column name is used as a heading, and the text is placed under it.
# """
# md_text = "# Generated Research Paper\n\n"
# for col, content in paper_dict.items():
# md_text += f"## {col}\n{content}\n\n"
# return md_text
# def main():
# st.title("Corpus-based Research Paper Generator")
# uploaded_file = st.file_uploader("Upload CSV corpus file", type="csv")
# if uploaded_file:
# df = pd.read_csv(uploaded_file)
# st.write("### Preview of Uploaded Data")
# st.dataframe(df.head())
# if st.button("Generate Research Paper"):
# st.info("Generating paper based on the columns of your corpus...")
# with st.spinner("Calling Perplexity AI..."):
# paper = generate_research_paper(df)
# if paper:
# formatted_paper = format_paper(paper)
# st.success("Research Paper Generated Successfully!")
# st.write(formatted_paper)
# st.download_button(
# label="Download Paper as Markdown",
# data=formatted_paper,
# file_name="research_paper.md",
# mime="text/markdown",
# )
# else:
# st.error(
# "Paper generation failed. Please check Perplexity API key."
# )
# if __name__ == "__main__":
# main()
#def generate_research_paper(df: pd.DataFrame, gaps_analysis: str, topic: str, journal: str, format: str) -> dict:
"""
For each column in the DataFrame, generate a research paper section (200-500 words)
that addresses the data in that column. Return a dict mapping column -> text.
"""
paper_sections = {}
for col in df.columns:
# Convert all non-null rows in the column to strings and join them for context
col_values = df[col].dropna().astype(str).tolist()
# We'll truncate if this is huge
print(col)
sample_text = " | ".join(col_values[:50]) # limit to first 50 rows for brevity
prompt = f"""
Topic: {topic}
Journal/Conference: {journal}
Format: {format}
Gaps Analysis: {gaps_analysis}
Column: {col}
Data Sample: {sample_text}
Generate a professional research paper section for the above column.
The section should be at least 100 words and at most 150 words,
focusing on key insights, challenges, and potential research angles.
Integrate the data samples as context for the content.
"""
section_text = call_perplexity_api(prompt)
paper_sections[col] = section_text.strip() if section_text else ""
return paper_sections
#def format_paper(paper_dict: dict, topic: str, journal: str, format: str) -> str:
"""
Format the generated paper into a Markdown string.
Add the topic, journal, and format as the main title, each column name as a heading,
and the corresponding text as paragraph content.
"""
md_text = f"# Research Paper on: {topic}\n\n"
md_text += f"## Journal/Conference: {journal}\n\n"
md_text += f"## Format: {format}\n\n"
for col, content in paper_dict.items():
md_text += f"### {col}\n{content}\n\n"
return md_text
#def main():
st.title("Corpus-based Research Paper Generator")
topic_input = st.text_input("Enter the topic for the research paper:")
journal_input = st.text_input("Enter the Journal/Conference aimed to publish:")
format_input = st.text_input("Enter the format of the research paper:")
gaps_analysis_file = st.file_uploader("Upload Gaps Analysis (.txt file)", type="txt")
gaps_analysis = ""
if gaps_analysis_file:
gaps_analysis = gaps_analysis_file.getvalue().decode("utf-8")
uploaded_file = st.file_uploader("Upload CSV corpus file", type="csv")
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.write("### Preview of Uploaded Data")
st.dataframe(df.head())
if st.button("Generate Research Paper"):
st.info("Generating paper based on the columns of your corpus...")
with st.spinner("Calling Perplexity AI..."):
paper = generate_research_paper(df, gaps_analysis, topic_input, journal_input, format_input)
if paper:
formatted_paper = format_paper(paper, topic_input, journal_input, format_input)
st.success("Research Paper Generated Successfully!")
st.write(formatted_paper)
st.download_button(
label="Download Paper as Markdown",
data=formatted_paper,
file_name="research_paper.md",
mime="text/markdown",
)
else:
st.error(
"Paper generation failed. Please check Perplexity API key."
)
def generate_research_paper(df: pd.DataFrame, gaps_analysis: str, topic: str, journal: str, format: str) -> str:
"""
Generate a research paper based on the entire DataFrame, the topic, journal, and format.
"""
# Convert the entire DataFrame to a string
df_string = df.to_string(index=False)
# Create the prompt
prompt = f"""
Topic: {topic}
Journal/Conference: {journal}
Format: {format}
Gaps Analysis: {gaps_analysis}
Data:
{df_string}
Generate a professional research paper based on the above data.
The paper should be well-structured, focusing on key insights, challenges, and potential research angles.
Use the Gaps Analysis to identify areas for improvement and future work and fill the gaps in the new paper.
Use the data as a reference to support your arguments, dont directly copy the data.
Ensure the paper is formatted according to the specified journal/conference format.
"""
# Call the Perplexity API
paper_text = call_perplexity_api(prompt)
return paper_text.strip() if paper_text else ""
def format_paper(paper_text: str, topic: str, journal: str, format: str) -> str:
"""
Format the generated paper into a Markdown string.
Add the topic, journal, and format as the main title, and the paper text as content.
"""
md_text = f"# Research Paper on: {topic}\n\n"
md_text += paper_text
return md_text
def main():
st.title("Corpus-based Research Paper Generator")
topic_input = st.text_input("Enter the topic for the research paper:")
journal_input = st.text_input("Enter the Journal/Conference aimed to publish:")
format_input = st.text_input("Enter the format of the research paper:")
gaps_analysis_file = st.file_uploader("Upload Gaps Analysis (.txt file)", type="txt")
gaps_analysis = ""
if gaps_analysis_file:
gaps_analysis = gaps_analysis_file.getvalue().decode("utf-8")
uploaded_file = st.file_uploader("Upload CSV corpus file", type="csv")
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.write("### Preview of Uploaded Data")
st.dataframe(df.head())
if st.button("Generate Research Paper"):
st.info("Generating paper based on the columns of your corpus...")
with st.spinner("Calling Perplexity AI..."):
paper_text = generate_research_paper(df, gaps_analysis, topic_input, journal_input, format_input)
if paper_text:
formatted_paper = format_paper(paper_text, topic_input, journal_input, format_input)
st.success("Research Paper Generated Successfully!")
st.write(formatted_paper)
st.download_button(
label="Download Paper as Markdown",
data=formatted_paper,
file_name="research_paper.md",
mime="text/markdown",
)
else:
st.error(
"Paper generation failed. Please check Perplexity API key."
)
if __name__ == "__main__":
main() |