File size: 10,302 Bytes
cea9944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# assignment_evaluation.py

import streamlit as st
from datetime import datetime
from pymongo import MongoClient
import os
from openai import OpenAI
from dotenv import load_dotenv
from bson import ObjectId

load_dotenv()

# MongoDB setup
MONGO_URI = os.getenv('MONGO_URI')
client = MongoClient(MONGO_URI)
db = client["novascholar_db"]
assignments_collection = db["assignments"]
assignment_evaluation_collection = db["assignment_evaluation"]
resources_collection = db["resources"]
students_collection = db["students"]

def evaluate_assignment(session_id, student_id, assignment_id):
    """
    Generate evaluation and analysis for submitted assignments
    """
    try:
        # Fetch assignment and student submission
        assignment = assignments_collection.find_one({"_id": assignment_id})
        if not assignment:
            return None

        # Find student's submission
        submission = next(
            (sub for sub in assignment.get('submissions', []) 
             if sub['student_id'] == str(student_id)),
            None
        )
        if not submission:
            return None

        # Default rubric for assignment evaluation
        default_rubric = """
        1. Understanding & Implementation (1-4):
           - Demonstrates understanding of assignment requirements
           - Implements required components correctly
           - Shows attention to detail
           
        2. Quality & Completeness (1-4):
           - Work is complete and thorough
           - Meets all assignment objectives
           - Shows evidence of effort and care
           
        3. Presentation & Organization (1-4):
           - Clear and professional presentation
           - Well-structured and organized
           - Follows required format and guidelines
        """

        # Initialize OpenAI client
        client = OpenAI(api_key=os.getenv('OPENAI_KEY'))

        # Create evaluation prompt
        prompt_template = f"""As an assignment evaluator, assess this student's submission based on the provided rubric criteria. Follow these guidelines:

        1. Evaluation Process:
        - Use each rubric criterion (scored 1-4)
        - Evaluate completeness and quality
        - Check alignment with assignment requirements
        - Calculate final score: sum of criteria scores converted to 10-point scale

        Assignment Title: {assignment['title']}
        Due Date: {assignment['due_date']}
        
        Submission Content:
        {submission.get('text_content', 'No text content available')}

        Rubric Criteria:
        {default_rubric}

        Provide your assessment in the following format:

        **Overall Score and Summary**
        - Score: [X]/10
        - Overall Assessment: [2-3 sentence summary]

        **Strengths**
        - [Key strength 1]
        - [Key strength 2]
        - [Key strength 3]

        **Areas for Improvement**
        - [Improvement point 1]
        - [Improvement point 2]
        - [Improvement point 3]

        **Specific Recommendations**
        [2-3 sentences with actionable feedback]
        """

        # Generate evaluation using OpenAI
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": prompt_template}],
            max_tokens=1000,
            temperature=0.4
        )

        # Store evaluation in MongoDB
        evaluation_doc = {
            "assignment_id": assignment_id,
            "student_id": student_id,
            "session_id": session_id,
            "evaluation": response.choices[0].message.content,
            "evaluated_at": datetime.utcnow()
        }
        
        assignment_evaluation_collection.insert_one(evaluation_doc)
        return evaluation_doc

    except Exception as e:
        print(f"Error in evaluate_assignment: {str(e)}")
        return None

def display_evaluation_to_faculty(session_id, student_id, course_id):
    """
    Display interface for faculty to generate and view assignment evaluations
    """
    st.header("Evaluate Assignments")

    try:
        # Fetch available assignments
        assignments = list(assignments_collection.find({
            "session_id": str(session_id),
            "course_id": course_id
        }))

        if not assignments:
            st.info("No assignments found for this session.")
            return

        # Select assignment
        assignment_options = {
            f"{assignment['title']} (Due: {assignment['due_date'].strftime('%Y-%m-%d')})" if 'due_date' in assignment else assignment['title']: assignment['_id'] 
            for assignment in assignments
        }
        
        if assignment_options:
            selected_assignment = st.selectbox(
                "Select Assignment to Evaluate",
                options=list(assignment_options.keys())
            )

            if selected_assignment:
                assignment_id = assignment_options[selected_assignment]
                assignment = assignments_collection.find_one({"_id": assignment_id})

                if assignment:
                    submissions = assignment.get('submissions', [])
                    if not submissions:
                        st.warning("No submissions found for this assignment.")
                        return

                    # Create a dropdown for student submissions
                    student_options = {
                        f"{students_collection.find_one({'_id': ObjectId(sub['student_id'])})['full_name']} (Submitted: {sub['submitted_at'].strftime('%Y-%m-%d %H:%M')})": sub['student_id']
                        for sub in submissions
                    }

                    selected_student = st.selectbox(
                        "Select Student Submission",
                        options=list(student_options.keys())
                    )

                    if selected_student:
                        student_id = student_options[selected_student]
                        submission = next(sub for sub in submissions if sub['student_id'] == student_id)

                        # Display submission details
                        st.subheader("Submission Details")
                        st.markdown(f"**Submitted:** {submission['submitted_at'].strftime('%Y-%m-%d %H:%M')}")
                        st.markdown(f"**File Name:** {submission['file_name']}")
                        
                        # Add download button for submitted file
                        if 'file_content' in submission:
                            st.download_button(
                                label="Download Submission",
                                data=submission['file_content'],
                                file_name=submission['file_name'],
                                mime=submission['file_type']
                            )

                        # Check for existing evaluation
                        existing_eval = assignment_evaluation_collection.find_one({
                            "assignment_id": assignment_id,
                            "student_id": student_id,
                            "session_id": str(session_id)
                        })

                        if existing_eval:
                            st.subheader("Evaluation Results")
                            st.markdown(existing_eval['evaluation'])
                            st.success("✓ Evaluation completed")
                            
                            if st.button("Regenerate Evaluation"):
                                with st.spinner("Regenerating evaluation..."):
                                    evaluation = evaluate_assignment(
                                        str(session_id),
                                        student_id,
                                        assignment_id
                                    )
                                    if evaluation:
                                        st.success("Evaluation regenerated successfully!")
                                        st.rerun()
                                    else:
                                        st.error("Error regenerating evaluation.")
                        else:
                            if st.button("Generate Evaluation"):
                                with st.spinner("Generating evaluation..."):
                                    evaluation = evaluate_assignment(
                                        str(session_id),
                                        student_id,
                                        assignment_id
                                    )
                                    if evaluation:
                                        st.success("Evaluation generated successfully!")
                                        st.markdown("### Generated Evaluation")
                                        st.markdown(evaluation['evaluation'])
                                        st.rerun()
                                    else:
                                        st.error("Error generating evaluation.")

    except Exception as e:
        st.error(f"An error occurred while loading the evaluations: {str(e)}")
        print(f"Error in display_evaluation_to_faculty: {str(e)}")

def display_assignment_results(assignment_id, student_id):
    """
    Display assignment results and analysis for a student
    """
    try:
        # Fetch analysis from evaluation collection
        analysis = assignment_evaluation_collection.find_one({
            "assignment_id": assignment_id,
            "student_id": str(student_id)
        })
        
        if not analysis:
            st.info("Evaluation will be available soon. Please check back later.")
            return
            
        st.header("Assignment Evaluation")
        
        # Display evaluation content
        st.markdown(analysis["evaluation"])
        
        # Display evaluation timestamp
        st.caption(f"Evaluation generated on: {analysis['evaluated_at'].strftime('%Y-%m-%d %H:%M:%S UTC')}")
            
    except Exception as e:
        st.error("An error occurred while loading the evaluation. Please try again later.")
        print(f"Error in display_assignment_results: {str(e)}")