Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,60 +3,56 @@ import matplotlib.pyplot as plt
|
|
3 |
import copy
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
|
|
6 |
from src import model
|
7 |
from src import util
|
8 |
from src.body import Body
|
9 |
from src.hand import Hand
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def pose_estimation(test_image):
|
13 |
bgr_image_path = './test.png'
|
14 |
with open(bgr_image_path, 'wb') as bgr_file:
|
15 |
bgr_file.write(test_image)
|
16 |
-
#
|
17 |
body_estimation = Body('model/body_pose_model.pth')
|
18 |
hand_estimation = Hand('model/hand_pose_model.pth')
|
19 |
|
20 |
-
|
21 |
-
oriImg = cv2.imread(test_image) # B,G,R order
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
# 姿态估计
|
26 |
candidate, subset = body_estimation(oriImg)
|
27 |
canvas = copy.deepcopy(oriImg)
|
28 |
-
# 绘制身体姿态
|
29 |
canvas = util.draw_bodypose(canvas, candidate, subset)
|
30 |
-
# print(candidate)
|
31 |
-
# print(subset)
|
32 |
-
# detect hand
|
33 |
hands_list = util.handDetect(candidate, subset, oriImg)
|
34 |
|
35 |
all_hand_peaks = []
|
36 |
for x, y, w, is_left in hands_list:
|
37 |
-
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
38 |
-
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
39 |
-
|
40 |
-
# if is_left:
|
41 |
-
# plt.imshow(oriImg[y:y+w, x:x+w, :][:, :, [2, 1, 0]])
|
42 |
-
# plt.show()
|
43 |
peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
|
44 |
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
|
45 |
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
|
46 |
-
# else:
|
47 |
-
# peaks = hand_estimation(cv2.flip(oriImg[y:y+w, x:x+w, :], 1))
|
48 |
-
# peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], w-peaks[:, 0]-1+x)
|
49 |
-
# peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
|
50 |
-
# print(peaks)
|
51 |
all_hand_peaks.append(peaks)
|
52 |
|
53 |
canvas = util.draw_handpose(canvas, all_hand_peaks)
|
54 |
|
55 |
plt.imshow(canvas[:, :, [2, 1, 0]])
|
56 |
plt.axis('off')
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# Convert the image path to bytes for Gradio to display
|
62 |
def convert_image_to_bytes(image_path):
|
@@ -65,39 +61,30 @@ def convert_image_to_bytes(image_path):
|
|
65 |
|
66 |
# Gradio interface
|
67 |
with gr.Blocks() as demo:
|
68 |
-
gr.Markdown(
|
69 |
-
'''
|
70 |
-
This space displays how to perform Pose Estimation.
|
71 |
-
## How to use this Space?
|
72 |
-
- Upload an image, preferably with a whole view of body.
|
73 |
-
- You will receive the result of the Pose Estimation after 5-10 seconds.
|
74 |
-
- Click the 'clear' button to clear all the files.
|
75 |
-
## Examples
|
76 |
-
- You can get the test examples from our [OpenPose Dataset Repo.](https://huggingface.co/datasets/SJTU-TES/openpose)
|
77 |
-
'''
|
78 |
-
)
|
79 |
with gr.Row():
|
80 |
image = gr.File(label="Upload Image", type="binary")
|
81 |
output_image = gr.Image(label="Estimation Result")
|
|
|
82 |
submit_button = gr.Button("Start Estimation")
|
83 |
-
|
84 |
# Run pose estimation and display results when the button is clicked
|
85 |
submit_button.click(
|
86 |
pose_estimation,
|
87 |
inputs=[image],
|
88 |
-
outputs=[output_image]
|
89 |
)
|
90 |
-
|
91 |
# Clear the results
|
92 |
clear_button = gr.Button("Clear")
|
93 |
def clear_outputs():
|
94 |
output_image.clear()
|
|
|
95 |
clear_button.click(
|
96 |
clear_outputs,
|
97 |
inputs=[],
|
98 |
-
outputs=[output_image]
|
99 |
)
|
100 |
|
101 |
-
# ?
|
102 |
if __name__ == "__main__":
|
103 |
demo.launch(debug=True)
|
|
|
3 |
import copy
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
6 |
+
import json # Import json module
|
7 |
from src import model
|
8 |
from src import util
|
9 |
from src.body import Body
|
10 |
from src.hand import Hand
|
11 |
|
12 |
+
# This function will generate and save the pose data as JSON
|
13 |
+
def save_json(candidate, subset, json_file_path='./pose_data.json'):
|
14 |
+
pose_data = {
|
15 |
+
'candidate': candidate.tolist(),
|
16 |
+
'subset': subset.tolist()
|
17 |
+
}
|
18 |
+
with open(json_file_path, 'w') as json_file:
|
19 |
+
json.dump(pose_data, json_file)
|
20 |
+
return json_file_path
|
21 |
|
22 |
def pose_estimation(test_image):
|
23 |
bgr_image_path = './test.png'
|
24 |
with open(bgr_image_path, 'wb') as bgr_file:
|
25 |
bgr_file.write(test_image)
|
26 |
+
# Load the estimation models
|
27 |
body_estimation = Body('model/body_pose_model.pth')
|
28 |
hand_estimation = Hand('model/hand_pose_model.pth')
|
29 |
|
30 |
+
oriImg = cv2.imread(bgr_image_path) # B,G,R order
|
|
|
31 |
|
32 |
+
# Perform pose estimation
|
|
|
|
|
33 |
candidate, subset = body_estimation(oriImg)
|
34 |
canvas = copy.deepcopy(oriImg)
|
|
|
35 |
canvas = util.draw_bodypose(canvas, candidate, subset)
|
|
|
|
|
|
|
36 |
hands_list = util.handDetect(candidate, subset, oriImg)
|
37 |
|
38 |
all_hand_peaks = []
|
39 |
for x, y, w, is_left in hands_list:
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
|
41 |
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
|
42 |
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
|
|
|
|
|
|
|
|
|
|
|
43 |
all_hand_peaks.append(peaks)
|
44 |
|
45 |
canvas = util.draw_handpose(canvas, all_hand_peaks)
|
46 |
|
47 |
plt.imshow(canvas[:, :, [2, 1, 0]])
|
48 |
plt.axis('off')
|
49 |
+
out_image_path = './out.jpg'
|
50 |
+
plt.savefig(out_image_path)
|
51 |
+
|
52 |
+
# Save JSON data and return its path
|
53 |
+
json_file_path = save_json(candidate, subset)
|
54 |
+
|
55 |
+
return out_image_path, json_file_path
|
56 |
|
57 |
# Convert the image path to bytes for Gradio to display
|
58 |
def convert_image_to_bytes(image_path):
|
|
|
61 |
|
62 |
# Gradio interface
|
63 |
with gr.Blocks() as demo:
|
64 |
+
gr.Markdown("# Pose Estimation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
with gr.Row():
|
66 |
image = gr.File(label="Upload Image", type="binary")
|
67 |
output_image = gr.Image(label="Estimation Result")
|
68 |
+
output_json = gr.File(label="Download Pose Data as JSON", type="file") # Add JSON output
|
69 |
submit_button = gr.Button("Start Estimation")
|
70 |
+
|
71 |
# Run pose estimation and display results when the button is clicked
|
72 |
submit_button.click(
|
73 |
pose_estimation,
|
74 |
inputs=[image],
|
75 |
+
outputs=[output_image, output_json] # Update outputs
|
76 |
)
|
77 |
+
|
78 |
# Clear the results
|
79 |
clear_button = gr.Button("Clear")
|
80 |
def clear_outputs():
|
81 |
output_image.clear()
|
82 |
+
output_json.clear() # Clear JSON output as well
|
83 |
clear_button.click(
|
84 |
clear_outputs,
|
85 |
inputs=[],
|
86 |
+
outputs=[output_image, output_json] # Update outputs
|
87 |
)
|
88 |
|
|
|
89 |
if __name__ == "__main__":
|
90 |
demo.launch(debug=True)
|