faiimea commited on
Commit
b79f629
·
verified ·
1 Parent(s): f4d5444

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -40
app.py CHANGED
@@ -3,60 +3,56 @@ import matplotlib.pyplot as plt
3
  import copy
4
  import numpy as np
5
  import gradio as gr
 
6
  from src import model
7
  from src import util
8
  from src.body import Body
9
  from src.hand import Hand
10
 
 
 
 
 
 
 
 
 
 
11
 
12
  def pose_estimation(test_image):
13
  bgr_image_path = './test.png'
14
  with open(bgr_image_path, 'wb') as bgr_file:
15
  bgr_file.write(test_image)
16
- # 加载估计模型
17
  body_estimation = Body('model/body_pose_model.pth')
18
  hand_estimation = Hand('model/hand_pose_model.pth')
19
 
20
- test_image = bgr_image_path
21
- oriImg = cv2.imread(test_image) # B,G,R order
22
 
23
- # oriImg = test_image
24
-
25
- # 姿态估计
26
  candidate, subset = body_estimation(oriImg)
27
  canvas = copy.deepcopy(oriImg)
28
- # 绘制身体姿态
29
  canvas = util.draw_bodypose(canvas, candidate, subset)
30
- # print(candidate)
31
- # print(subset)
32
- # detect hand
33
  hands_list = util.handDetect(candidate, subset, oriImg)
34
 
35
  all_hand_peaks = []
36
  for x, y, w, is_left in hands_list:
37
- # cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
38
- # cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
39
-
40
- # if is_left:
41
- # plt.imshow(oriImg[y:y+w, x:x+w, :][:, :, [2, 1, 0]])
42
- # plt.show()
43
  peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
44
  peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
45
  peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
46
- # else:
47
- # peaks = hand_estimation(cv2.flip(oriImg[y:y+w, x:x+w, :], 1))
48
- # peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], w-peaks[:, 0]-1+x)
49
- # peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
50
- # print(peaks)
51
  all_hand_peaks.append(peaks)
52
 
53
  canvas = util.draw_handpose(canvas, all_hand_peaks)
54
 
55
  plt.imshow(canvas[:, :, [2, 1, 0]])
56
  plt.axis('off')
57
- plt.savefig('./out.jpg')
58
- # plt.show()
59
- return './out.jpg'
 
 
 
 
60
 
61
  # Convert the image path to bytes for Gradio to display
62
  def convert_image_to_bytes(image_path):
@@ -65,39 +61,30 @@ def convert_image_to_bytes(image_path):
65
 
66
  # Gradio interface
67
  with gr.Blocks() as demo:
68
- gr.Markdown(
69
- '''
70
- This space displays how to perform Pose Estimation.
71
- ## How to use this Space?
72
- - Upload an image, preferably with a whole view of body.
73
- - You will receive the result of the Pose Estimation after 5-10 seconds.
74
- - Click the 'clear' button to clear all the files.
75
- ## Examples
76
- - You can get the test examples from our [OpenPose Dataset Repo.](https://huggingface.co/datasets/SJTU-TES/openpose)
77
- '''
78
- )
79
  with gr.Row():
80
  image = gr.File(label="Upload Image", type="binary")
81
  output_image = gr.Image(label="Estimation Result")
 
82
  submit_button = gr.Button("Start Estimation")
83
-
84
  # Run pose estimation and display results when the button is clicked
85
  submit_button.click(
86
  pose_estimation,
87
  inputs=[image],
88
- outputs=[output_image]
89
  )
90
-
91
  # Clear the results
92
  clear_button = gr.Button("Clear")
93
  def clear_outputs():
94
  output_image.clear()
 
95
  clear_button.click(
96
  clear_outputs,
97
  inputs=[],
98
- outputs=[output_image]
99
  )
100
 
101
- # ?
102
  if __name__ == "__main__":
103
  demo.launch(debug=True)
 
3
  import copy
4
  import numpy as np
5
  import gradio as gr
6
+ import json # Import json module
7
  from src import model
8
  from src import util
9
  from src.body import Body
10
  from src.hand import Hand
11
 
12
+ # This function will generate and save the pose data as JSON
13
+ def save_json(candidate, subset, json_file_path='./pose_data.json'):
14
+ pose_data = {
15
+ 'candidate': candidate.tolist(),
16
+ 'subset': subset.tolist()
17
+ }
18
+ with open(json_file_path, 'w') as json_file:
19
+ json.dump(pose_data, json_file)
20
+ return json_file_path
21
 
22
  def pose_estimation(test_image):
23
  bgr_image_path = './test.png'
24
  with open(bgr_image_path, 'wb') as bgr_file:
25
  bgr_file.write(test_image)
26
+ # Load the estimation models
27
  body_estimation = Body('model/body_pose_model.pth')
28
  hand_estimation = Hand('model/hand_pose_model.pth')
29
 
30
+ oriImg = cv2.imread(bgr_image_path) # B,G,R order
 
31
 
32
+ # Perform pose estimation
 
 
33
  candidate, subset = body_estimation(oriImg)
34
  canvas = copy.deepcopy(oriImg)
 
35
  canvas = util.draw_bodypose(canvas, candidate, subset)
 
 
 
36
  hands_list = util.handDetect(candidate, subset, oriImg)
37
 
38
  all_hand_peaks = []
39
  for x, y, w, is_left in hands_list:
 
 
 
 
 
 
40
  peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
41
  peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
42
  peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
 
 
 
 
 
43
  all_hand_peaks.append(peaks)
44
 
45
  canvas = util.draw_handpose(canvas, all_hand_peaks)
46
 
47
  plt.imshow(canvas[:, :, [2, 1, 0]])
48
  plt.axis('off')
49
+ out_image_path = './out.jpg'
50
+ plt.savefig(out_image_path)
51
+
52
+ # Save JSON data and return its path
53
+ json_file_path = save_json(candidate, subset)
54
+
55
+ return out_image_path, json_file_path
56
 
57
  # Convert the image path to bytes for Gradio to display
58
  def convert_image_to_bytes(image_path):
 
61
 
62
  # Gradio interface
63
  with gr.Blocks() as demo:
64
+ gr.Markdown("# Pose Estimation")
 
 
 
 
 
 
 
 
 
 
65
  with gr.Row():
66
  image = gr.File(label="Upload Image", type="binary")
67
  output_image = gr.Image(label="Estimation Result")
68
+ output_json = gr.File(label="Download Pose Data as JSON", type="file") # Add JSON output
69
  submit_button = gr.Button("Start Estimation")
70
+
71
  # Run pose estimation and display results when the button is clicked
72
  submit_button.click(
73
  pose_estimation,
74
  inputs=[image],
75
+ outputs=[output_image, output_json] # Update outputs
76
  )
77
+
78
  # Clear the results
79
  clear_button = gr.Button("Clear")
80
  def clear_outputs():
81
  output_image.clear()
82
+ output_json.clear() # Clear JSON output as well
83
  clear_button.click(
84
  clear_outputs,
85
  inputs=[],
86
+ outputs=[output_image, output_json] # Update outputs
87
  )
88
 
 
89
  if __name__ == "__main__":
90
  demo.launch(debug=True)