Spaces:
Running
Running
Fazhong Liu
commited on
Commit
·
40bae10
1
Parent(s):
16617b2
init
Browse files- .gitattributes +35 -35
- .gitignore +2 -0
- OIP.jpg +0 -0
- app.py +92 -0
- model/body_pose_deploy.prototxt +2976 -0
- model/hand_pose_deploy.prototxt +1756 -0
- out.jpg +0 -0
- requirements.txt +6 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-37.pyc +0 -0
- src/__pycache__/__init__.cpython-38.pyc +0 -0
- src/__pycache__/body.cpython-37.pyc +0 -0
- src/__pycache__/body.cpython-38.pyc +0 -0
- src/__pycache__/hand.cpython-37.pyc +0 -0
- src/__pycache__/hand.cpython-38.pyc +0 -0
- src/__pycache__/model.cpython-37.pyc +0 -0
- src/__pycache__/model.cpython-38.pyc +0 -0
- src/__pycache__/util.cpython-37.pyc +0 -0
- src/__pycache__/util.cpython-38.pyc +0 -0
- src/body.py +218 -0
- src/hand.py +85 -0
- src/hand_model_output_size.json +992 -0
- src/hand_model_outputsize.py +17 -0
- src/model.py +219 -0
- src/util.py +198 -0
- test.png +0 -0
- test_full2.jpg +0 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,35 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
# *.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
# *.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
# *.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
# *.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
# *.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
# *.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
# *.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
# *.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
# *.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
# *.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
# *.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
# *.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
# *.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
# *.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
# *.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
# *.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
# *.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
# *.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
# *.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
# *.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
# *.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
# *.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
# *.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
# *.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
# *.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
# saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
# *.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
# *.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
# *.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
# *.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
# *.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
# *.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
# *.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
# *.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
# *tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.caffemodel
|
| 2 |
+
*.pth
|
OIP.jpg
ADDED
|
app.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import copy
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from src import model
|
| 7 |
+
from src import util
|
| 8 |
+
from src.body import Body
|
| 9 |
+
from src.hand import Hand
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def pose_estimation(test_image):
|
| 13 |
+
bgr_image_path = './test.png'
|
| 14 |
+
with open(bgr_image_path, 'wb') as bgr_file:
|
| 15 |
+
bgr_file.write(test_image)
|
| 16 |
+
# 加载估计模型
|
| 17 |
+
body_estimation = Body('model/body_pose_model.pth')
|
| 18 |
+
hand_estimation = Hand('model/hand_pose_model.pth')
|
| 19 |
+
|
| 20 |
+
test_image = bgr_image_path
|
| 21 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
| 22 |
+
|
| 23 |
+
# oriImg = test_image
|
| 24 |
+
|
| 25 |
+
# 姿态估计
|
| 26 |
+
candidate, subset = body_estimation(oriImg)
|
| 27 |
+
canvas = copy.deepcopy(oriImg)
|
| 28 |
+
# 绘制身体姿态
|
| 29 |
+
canvas = util.draw_bodypose(canvas, candidate, subset)
|
| 30 |
+
# print(candidate)
|
| 31 |
+
# print(subset)
|
| 32 |
+
# detect hand
|
| 33 |
+
hands_list = util.handDetect(candidate, subset, oriImg)
|
| 34 |
+
|
| 35 |
+
all_hand_peaks = []
|
| 36 |
+
for x, y, w, is_left in hands_list:
|
| 37 |
+
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
| 38 |
+
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
| 39 |
+
|
| 40 |
+
# if is_left:
|
| 41 |
+
# plt.imshow(oriImg[y:y+w, x:x+w, :][:, :, [2, 1, 0]])
|
| 42 |
+
# plt.show()
|
| 43 |
+
peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
|
| 44 |
+
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
|
| 45 |
+
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
|
| 46 |
+
# else:
|
| 47 |
+
# peaks = hand_estimation(cv2.flip(oriImg[y:y+w, x:x+w, :], 1))
|
| 48 |
+
# peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], w-peaks[:, 0]-1+x)
|
| 49 |
+
# peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
|
| 50 |
+
# print(peaks)
|
| 51 |
+
all_hand_peaks.append(peaks)
|
| 52 |
+
|
| 53 |
+
canvas = util.draw_handpose(canvas, all_hand_peaks)
|
| 54 |
+
|
| 55 |
+
plt.imshow(canvas[:, :, [2, 1, 0]])
|
| 56 |
+
plt.axis('off')
|
| 57 |
+
plt.savefig('./out.jpg')
|
| 58 |
+
# plt.show()
|
| 59 |
+
return './out.jpg'
|
| 60 |
+
|
| 61 |
+
# Convert the image path to bytes for Gradio to display
|
| 62 |
+
def convert_image_to_bytes(image_path):
|
| 63 |
+
with open(image_path, "rb") as image_file:
|
| 64 |
+
return image_file.read()
|
| 65 |
+
|
| 66 |
+
# Gradio interface
|
| 67 |
+
with gr.Blocks() as demo:
|
| 68 |
+
gr.Markdown("# Pose Estimation")
|
| 69 |
+
with gr.Row():
|
| 70 |
+
image = gr.File(label="Upload Image", type="binary")
|
| 71 |
+
output_image = gr.Image(label="Estimation Result")
|
| 72 |
+
submit_button = gr.Button("Start Estimation")
|
| 73 |
+
|
| 74 |
+
# Run pose estimation and display results when the button is clicked
|
| 75 |
+
submit_button.click(
|
| 76 |
+
pose_estimation,
|
| 77 |
+
inputs=[image],
|
| 78 |
+
outputs=[output_image]
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Clear the results
|
| 82 |
+
clear_button = gr.Button("Clear")
|
| 83 |
+
def clear_outputs():
|
| 84 |
+
output_image.clear()
|
| 85 |
+
clear_button.click(
|
| 86 |
+
clear_outputs,
|
| 87 |
+
inputs=[],
|
| 88 |
+
outputs=[output_image]
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
demo.launch(debug=True)
|
model/body_pose_deploy.prototxt
ADDED
|
@@ -0,0 +1,2976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
input: "image"
|
| 2 |
+
input_dim: 1
|
| 3 |
+
input_dim: 3
|
| 4 |
+
input_dim: 1 # This value will be defined at runtime
|
| 5 |
+
input_dim: 1 # This value will be defined at runtime
|
| 6 |
+
layer {
|
| 7 |
+
name: "conv1_1"
|
| 8 |
+
type: "Convolution"
|
| 9 |
+
bottom: "image"
|
| 10 |
+
top: "conv1_1"
|
| 11 |
+
param {
|
| 12 |
+
lr_mult: 1.0
|
| 13 |
+
decay_mult: 1
|
| 14 |
+
}
|
| 15 |
+
param {
|
| 16 |
+
lr_mult: 2.0
|
| 17 |
+
decay_mult: 0
|
| 18 |
+
}
|
| 19 |
+
convolution_param {
|
| 20 |
+
num_output: 64
|
| 21 |
+
pad: 1
|
| 22 |
+
kernel_size: 3
|
| 23 |
+
weight_filler {
|
| 24 |
+
type: "gaussian"
|
| 25 |
+
std: 0.01
|
| 26 |
+
}
|
| 27 |
+
bias_filler {
|
| 28 |
+
type: "constant"
|
| 29 |
+
}
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
layer {
|
| 33 |
+
name: "relu1_1"
|
| 34 |
+
type: "ReLU"
|
| 35 |
+
bottom: "conv1_1"
|
| 36 |
+
top: "conv1_1"
|
| 37 |
+
}
|
| 38 |
+
layer {
|
| 39 |
+
name: "conv1_2"
|
| 40 |
+
type: "Convolution"
|
| 41 |
+
bottom: "conv1_1"
|
| 42 |
+
top: "conv1_2"
|
| 43 |
+
param {
|
| 44 |
+
lr_mult: 1.0
|
| 45 |
+
decay_mult: 1
|
| 46 |
+
}
|
| 47 |
+
param {
|
| 48 |
+
lr_mult: 2.0
|
| 49 |
+
decay_mult: 0
|
| 50 |
+
}
|
| 51 |
+
convolution_param {
|
| 52 |
+
num_output: 64
|
| 53 |
+
pad: 1
|
| 54 |
+
kernel_size: 3
|
| 55 |
+
weight_filler {
|
| 56 |
+
type: "gaussian"
|
| 57 |
+
std: 0.01
|
| 58 |
+
}
|
| 59 |
+
bias_filler {
|
| 60 |
+
type: "constant"
|
| 61 |
+
}
|
| 62 |
+
}
|
| 63 |
+
}
|
| 64 |
+
layer {
|
| 65 |
+
name: "relu1_2"
|
| 66 |
+
type: "ReLU"
|
| 67 |
+
bottom: "conv1_2"
|
| 68 |
+
top: "conv1_2"
|
| 69 |
+
}
|
| 70 |
+
layer {
|
| 71 |
+
name: "pool1_stage1"
|
| 72 |
+
type: "Pooling"
|
| 73 |
+
bottom: "conv1_2"
|
| 74 |
+
top: "pool1_stage1"
|
| 75 |
+
pooling_param {
|
| 76 |
+
pool: MAX
|
| 77 |
+
kernel_size: 2
|
| 78 |
+
stride: 2
|
| 79 |
+
}
|
| 80 |
+
}
|
| 81 |
+
layer {
|
| 82 |
+
name: "conv2_1"
|
| 83 |
+
type: "Convolution"
|
| 84 |
+
bottom: "pool1_stage1"
|
| 85 |
+
top: "conv2_1"
|
| 86 |
+
param {
|
| 87 |
+
lr_mult: 1.0
|
| 88 |
+
decay_mult: 1
|
| 89 |
+
}
|
| 90 |
+
param {
|
| 91 |
+
lr_mult: 2.0
|
| 92 |
+
decay_mult: 0
|
| 93 |
+
}
|
| 94 |
+
convolution_param {
|
| 95 |
+
num_output: 128
|
| 96 |
+
pad: 1
|
| 97 |
+
kernel_size: 3
|
| 98 |
+
weight_filler {
|
| 99 |
+
type: "gaussian"
|
| 100 |
+
std: 0.01
|
| 101 |
+
}
|
| 102 |
+
bias_filler {
|
| 103 |
+
type: "constant"
|
| 104 |
+
}
|
| 105 |
+
}
|
| 106 |
+
}
|
| 107 |
+
layer {
|
| 108 |
+
name: "relu2_1"
|
| 109 |
+
type: "ReLU"
|
| 110 |
+
bottom: "conv2_1"
|
| 111 |
+
top: "conv2_1"
|
| 112 |
+
}
|
| 113 |
+
layer {
|
| 114 |
+
name: "conv2_2"
|
| 115 |
+
type: "Convolution"
|
| 116 |
+
bottom: "conv2_1"
|
| 117 |
+
top: "conv2_2"
|
| 118 |
+
param {
|
| 119 |
+
lr_mult: 1.0
|
| 120 |
+
decay_mult: 1
|
| 121 |
+
}
|
| 122 |
+
param {
|
| 123 |
+
lr_mult: 2.0
|
| 124 |
+
decay_mult: 0
|
| 125 |
+
}
|
| 126 |
+
convolution_param {
|
| 127 |
+
num_output: 128
|
| 128 |
+
pad: 1
|
| 129 |
+
kernel_size: 3
|
| 130 |
+
weight_filler {
|
| 131 |
+
type: "gaussian"
|
| 132 |
+
std: 0.01
|
| 133 |
+
}
|
| 134 |
+
bias_filler {
|
| 135 |
+
type: "constant"
|
| 136 |
+
}
|
| 137 |
+
}
|
| 138 |
+
}
|
| 139 |
+
layer {
|
| 140 |
+
name: "relu2_2"
|
| 141 |
+
type: "ReLU"
|
| 142 |
+
bottom: "conv2_2"
|
| 143 |
+
top: "conv2_2"
|
| 144 |
+
}
|
| 145 |
+
layer {
|
| 146 |
+
name: "pool2_stage1"
|
| 147 |
+
type: "Pooling"
|
| 148 |
+
bottom: "conv2_2"
|
| 149 |
+
top: "pool2_stage1"
|
| 150 |
+
pooling_param {
|
| 151 |
+
pool: MAX
|
| 152 |
+
kernel_size: 2
|
| 153 |
+
stride: 2
|
| 154 |
+
}
|
| 155 |
+
}
|
| 156 |
+
layer {
|
| 157 |
+
name: "conv3_1"
|
| 158 |
+
type: "Convolution"
|
| 159 |
+
bottom: "pool2_stage1"
|
| 160 |
+
top: "conv3_1"
|
| 161 |
+
param {
|
| 162 |
+
lr_mult: 1.0
|
| 163 |
+
decay_mult: 1
|
| 164 |
+
}
|
| 165 |
+
param {
|
| 166 |
+
lr_mult: 2.0
|
| 167 |
+
decay_mult: 0
|
| 168 |
+
}
|
| 169 |
+
convolution_param {
|
| 170 |
+
num_output: 256
|
| 171 |
+
pad: 1
|
| 172 |
+
kernel_size: 3
|
| 173 |
+
weight_filler {
|
| 174 |
+
type: "gaussian"
|
| 175 |
+
std: 0.01
|
| 176 |
+
}
|
| 177 |
+
bias_filler {
|
| 178 |
+
type: "constant"
|
| 179 |
+
}
|
| 180 |
+
}
|
| 181 |
+
}
|
| 182 |
+
layer {
|
| 183 |
+
name: "relu3_1"
|
| 184 |
+
type: "ReLU"
|
| 185 |
+
bottom: "conv3_1"
|
| 186 |
+
top: "conv3_1"
|
| 187 |
+
}
|
| 188 |
+
layer {
|
| 189 |
+
name: "conv3_2"
|
| 190 |
+
type: "Convolution"
|
| 191 |
+
bottom: "conv3_1"
|
| 192 |
+
top: "conv3_2"
|
| 193 |
+
param {
|
| 194 |
+
lr_mult: 1.0
|
| 195 |
+
decay_mult: 1
|
| 196 |
+
}
|
| 197 |
+
param {
|
| 198 |
+
lr_mult: 2.0
|
| 199 |
+
decay_mult: 0
|
| 200 |
+
}
|
| 201 |
+
convolution_param {
|
| 202 |
+
num_output: 256
|
| 203 |
+
pad: 1
|
| 204 |
+
kernel_size: 3
|
| 205 |
+
weight_filler {
|
| 206 |
+
type: "gaussian"
|
| 207 |
+
std: 0.01
|
| 208 |
+
}
|
| 209 |
+
bias_filler {
|
| 210 |
+
type: "constant"
|
| 211 |
+
}
|
| 212 |
+
}
|
| 213 |
+
}
|
| 214 |
+
layer {
|
| 215 |
+
name: "relu3_2"
|
| 216 |
+
type: "ReLU"
|
| 217 |
+
bottom: "conv3_2"
|
| 218 |
+
top: "conv3_2"
|
| 219 |
+
}
|
| 220 |
+
layer {
|
| 221 |
+
name: "conv3_3"
|
| 222 |
+
type: "Convolution"
|
| 223 |
+
bottom: "conv3_2"
|
| 224 |
+
top: "conv3_3"
|
| 225 |
+
param {
|
| 226 |
+
lr_mult: 1.0
|
| 227 |
+
decay_mult: 1
|
| 228 |
+
}
|
| 229 |
+
param {
|
| 230 |
+
lr_mult: 2.0
|
| 231 |
+
decay_mult: 0
|
| 232 |
+
}
|
| 233 |
+
convolution_param {
|
| 234 |
+
num_output: 256
|
| 235 |
+
pad: 1
|
| 236 |
+
kernel_size: 3
|
| 237 |
+
weight_filler {
|
| 238 |
+
type: "gaussian"
|
| 239 |
+
std: 0.01
|
| 240 |
+
}
|
| 241 |
+
bias_filler {
|
| 242 |
+
type: "constant"
|
| 243 |
+
}
|
| 244 |
+
}
|
| 245 |
+
}
|
| 246 |
+
layer {
|
| 247 |
+
name: "relu3_3"
|
| 248 |
+
type: "ReLU"
|
| 249 |
+
bottom: "conv3_3"
|
| 250 |
+
top: "conv3_3"
|
| 251 |
+
}
|
| 252 |
+
layer {
|
| 253 |
+
name: "conv3_4"
|
| 254 |
+
type: "Convolution"
|
| 255 |
+
bottom: "conv3_3"
|
| 256 |
+
top: "conv3_4"
|
| 257 |
+
param {
|
| 258 |
+
lr_mult: 1.0
|
| 259 |
+
decay_mult: 1
|
| 260 |
+
}
|
| 261 |
+
param {
|
| 262 |
+
lr_mult: 2.0
|
| 263 |
+
decay_mult: 0
|
| 264 |
+
}
|
| 265 |
+
convolution_param {
|
| 266 |
+
num_output: 256
|
| 267 |
+
pad: 1
|
| 268 |
+
kernel_size: 3
|
| 269 |
+
weight_filler {
|
| 270 |
+
type: "gaussian"
|
| 271 |
+
std: 0.01
|
| 272 |
+
}
|
| 273 |
+
bias_filler {
|
| 274 |
+
type: "constant"
|
| 275 |
+
}
|
| 276 |
+
}
|
| 277 |
+
}
|
| 278 |
+
layer {
|
| 279 |
+
name: "relu3_4"
|
| 280 |
+
type: "ReLU"
|
| 281 |
+
bottom: "conv3_4"
|
| 282 |
+
top: "conv3_4"
|
| 283 |
+
}
|
| 284 |
+
layer {
|
| 285 |
+
name: "pool3_stage1"
|
| 286 |
+
type: "Pooling"
|
| 287 |
+
bottom: "conv3_4"
|
| 288 |
+
top: "pool3_stage1"
|
| 289 |
+
pooling_param {
|
| 290 |
+
pool: MAX
|
| 291 |
+
kernel_size: 2
|
| 292 |
+
stride: 2
|
| 293 |
+
}
|
| 294 |
+
}
|
| 295 |
+
layer {
|
| 296 |
+
name: "conv4_1"
|
| 297 |
+
type: "Convolution"
|
| 298 |
+
bottom: "pool3_stage1"
|
| 299 |
+
top: "conv4_1"
|
| 300 |
+
param {
|
| 301 |
+
lr_mult: 1.0
|
| 302 |
+
decay_mult: 1
|
| 303 |
+
}
|
| 304 |
+
param {
|
| 305 |
+
lr_mult: 2.0
|
| 306 |
+
decay_mult: 0
|
| 307 |
+
}
|
| 308 |
+
convolution_param {
|
| 309 |
+
num_output: 512
|
| 310 |
+
pad: 1
|
| 311 |
+
kernel_size: 3
|
| 312 |
+
weight_filler {
|
| 313 |
+
type: "gaussian"
|
| 314 |
+
std: 0.01
|
| 315 |
+
}
|
| 316 |
+
bias_filler {
|
| 317 |
+
type: "constant"
|
| 318 |
+
}
|
| 319 |
+
}
|
| 320 |
+
}
|
| 321 |
+
layer {
|
| 322 |
+
name: "relu4_1"
|
| 323 |
+
type: "ReLU"
|
| 324 |
+
bottom: "conv4_1"
|
| 325 |
+
top: "conv4_1"
|
| 326 |
+
}
|
| 327 |
+
layer {
|
| 328 |
+
name: "conv4_2"
|
| 329 |
+
type: "Convolution"
|
| 330 |
+
bottom: "conv4_1"
|
| 331 |
+
top: "conv4_2"
|
| 332 |
+
param {
|
| 333 |
+
lr_mult: 1.0
|
| 334 |
+
decay_mult: 1
|
| 335 |
+
}
|
| 336 |
+
param {
|
| 337 |
+
lr_mult: 2.0
|
| 338 |
+
decay_mult: 0
|
| 339 |
+
}
|
| 340 |
+
convolution_param {
|
| 341 |
+
num_output: 512
|
| 342 |
+
pad: 1
|
| 343 |
+
kernel_size: 3
|
| 344 |
+
weight_filler {
|
| 345 |
+
type: "gaussian"
|
| 346 |
+
std: 0.01
|
| 347 |
+
}
|
| 348 |
+
bias_filler {
|
| 349 |
+
type: "constant"
|
| 350 |
+
}
|
| 351 |
+
}
|
| 352 |
+
}
|
| 353 |
+
layer {
|
| 354 |
+
name: "relu4_2"
|
| 355 |
+
type: "ReLU"
|
| 356 |
+
bottom: "conv4_2"
|
| 357 |
+
top: "conv4_2"
|
| 358 |
+
}
|
| 359 |
+
layer {
|
| 360 |
+
name: "conv4_3_CPM"
|
| 361 |
+
type: "Convolution"
|
| 362 |
+
bottom: "conv4_2"
|
| 363 |
+
top: "conv4_3_CPM"
|
| 364 |
+
param {
|
| 365 |
+
lr_mult: 1.0
|
| 366 |
+
decay_mult: 1
|
| 367 |
+
}
|
| 368 |
+
param {
|
| 369 |
+
lr_mult: 2.0
|
| 370 |
+
decay_mult: 0
|
| 371 |
+
}
|
| 372 |
+
convolution_param {
|
| 373 |
+
num_output: 256
|
| 374 |
+
pad: 1
|
| 375 |
+
kernel_size: 3
|
| 376 |
+
weight_filler {
|
| 377 |
+
type: "gaussian"
|
| 378 |
+
std: 0.01
|
| 379 |
+
}
|
| 380 |
+
bias_filler {
|
| 381 |
+
type: "constant"
|
| 382 |
+
}
|
| 383 |
+
}
|
| 384 |
+
}
|
| 385 |
+
layer {
|
| 386 |
+
name: "relu4_3_CPM"
|
| 387 |
+
type: "ReLU"
|
| 388 |
+
bottom: "conv4_3_CPM"
|
| 389 |
+
top: "conv4_3_CPM"
|
| 390 |
+
}
|
| 391 |
+
layer {
|
| 392 |
+
name: "conv4_4_CPM"
|
| 393 |
+
type: "Convolution"
|
| 394 |
+
bottom: "conv4_3_CPM"
|
| 395 |
+
top: "conv4_4_CPM"
|
| 396 |
+
param {
|
| 397 |
+
lr_mult: 1.0
|
| 398 |
+
decay_mult: 1
|
| 399 |
+
}
|
| 400 |
+
param {
|
| 401 |
+
lr_mult: 2.0
|
| 402 |
+
decay_mult: 0
|
| 403 |
+
}
|
| 404 |
+
convolution_param {
|
| 405 |
+
num_output: 128
|
| 406 |
+
pad: 1
|
| 407 |
+
kernel_size: 3
|
| 408 |
+
weight_filler {
|
| 409 |
+
type: "gaussian"
|
| 410 |
+
std: 0.01
|
| 411 |
+
}
|
| 412 |
+
bias_filler {
|
| 413 |
+
type: "constant"
|
| 414 |
+
}
|
| 415 |
+
}
|
| 416 |
+
}
|
| 417 |
+
layer {
|
| 418 |
+
name: "relu4_4_CPM"
|
| 419 |
+
type: "ReLU"
|
| 420 |
+
bottom: "conv4_4_CPM"
|
| 421 |
+
top: "conv4_4_CPM"
|
| 422 |
+
}
|
| 423 |
+
layer {
|
| 424 |
+
name: "conv5_1_CPM_L1"
|
| 425 |
+
type: "Convolution"
|
| 426 |
+
bottom: "conv4_4_CPM"
|
| 427 |
+
top: "conv5_1_CPM_L1"
|
| 428 |
+
param {
|
| 429 |
+
lr_mult: 1.0
|
| 430 |
+
decay_mult: 1
|
| 431 |
+
}
|
| 432 |
+
param {
|
| 433 |
+
lr_mult: 2.0
|
| 434 |
+
decay_mult: 0
|
| 435 |
+
}
|
| 436 |
+
convolution_param {
|
| 437 |
+
num_output: 128
|
| 438 |
+
pad: 1
|
| 439 |
+
kernel_size: 3
|
| 440 |
+
weight_filler {
|
| 441 |
+
type: "gaussian"
|
| 442 |
+
std: 0.01
|
| 443 |
+
}
|
| 444 |
+
bias_filler {
|
| 445 |
+
type: "constant"
|
| 446 |
+
}
|
| 447 |
+
}
|
| 448 |
+
}
|
| 449 |
+
layer {
|
| 450 |
+
name: "relu5_1_CPM_L1"
|
| 451 |
+
type: "ReLU"
|
| 452 |
+
bottom: "conv5_1_CPM_L1"
|
| 453 |
+
top: "conv5_1_CPM_L1"
|
| 454 |
+
}
|
| 455 |
+
layer {
|
| 456 |
+
name: "conv5_1_CPM_L2"
|
| 457 |
+
type: "Convolution"
|
| 458 |
+
bottom: "conv4_4_CPM"
|
| 459 |
+
top: "conv5_1_CPM_L2"
|
| 460 |
+
param {
|
| 461 |
+
lr_mult: 1.0
|
| 462 |
+
decay_mult: 1
|
| 463 |
+
}
|
| 464 |
+
param {
|
| 465 |
+
lr_mult: 2.0
|
| 466 |
+
decay_mult: 0
|
| 467 |
+
}
|
| 468 |
+
convolution_param {
|
| 469 |
+
num_output: 128
|
| 470 |
+
pad: 1
|
| 471 |
+
kernel_size: 3
|
| 472 |
+
weight_filler {
|
| 473 |
+
type: "gaussian"
|
| 474 |
+
std: 0.01
|
| 475 |
+
}
|
| 476 |
+
bias_filler {
|
| 477 |
+
type: "constant"
|
| 478 |
+
}
|
| 479 |
+
}
|
| 480 |
+
}
|
| 481 |
+
layer {
|
| 482 |
+
name: "relu5_1_CPM_L2"
|
| 483 |
+
type: "ReLU"
|
| 484 |
+
bottom: "conv5_1_CPM_L2"
|
| 485 |
+
top: "conv5_1_CPM_L2"
|
| 486 |
+
}
|
| 487 |
+
layer {
|
| 488 |
+
name: "conv5_2_CPM_L1"
|
| 489 |
+
type: "Convolution"
|
| 490 |
+
bottom: "conv5_1_CPM_L1"
|
| 491 |
+
top: "conv5_2_CPM_L1"
|
| 492 |
+
param {
|
| 493 |
+
lr_mult: 1.0
|
| 494 |
+
decay_mult: 1
|
| 495 |
+
}
|
| 496 |
+
param {
|
| 497 |
+
lr_mult: 2.0
|
| 498 |
+
decay_mult: 0
|
| 499 |
+
}
|
| 500 |
+
convolution_param {
|
| 501 |
+
num_output: 128
|
| 502 |
+
pad: 1
|
| 503 |
+
kernel_size: 3
|
| 504 |
+
weight_filler {
|
| 505 |
+
type: "gaussian"
|
| 506 |
+
std: 0.01
|
| 507 |
+
}
|
| 508 |
+
bias_filler {
|
| 509 |
+
type: "constant"
|
| 510 |
+
}
|
| 511 |
+
}
|
| 512 |
+
}
|
| 513 |
+
layer {
|
| 514 |
+
name: "relu5_2_CPM_L1"
|
| 515 |
+
type: "ReLU"
|
| 516 |
+
bottom: "conv5_2_CPM_L1"
|
| 517 |
+
top: "conv5_2_CPM_L1"
|
| 518 |
+
}
|
| 519 |
+
layer {
|
| 520 |
+
name: "conv5_2_CPM_L2"
|
| 521 |
+
type: "Convolution"
|
| 522 |
+
bottom: "conv5_1_CPM_L2"
|
| 523 |
+
top: "conv5_2_CPM_L2"
|
| 524 |
+
param {
|
| 525 |
+
lr_mult: 1.0
|
| 526 |
+
decay_mult: 1
|
| 527 |
+
}
|
| 528 |
+
param {
|
| 529 |
+
lr_mult: 2.0
|
| 530 |
+
decay_mult: 0
|
| 531 |
+
}
|
| 532 |
+
convolution_param {
|
| 533 |
+
num_output: 128
|
| 534 |
+
pad: 1
|
| 535 |
+
kernel_size: 3
|
| 536 |
+
weight_filler {
|
| 537 |
+
type: "gaussian"
|
| 538 |
+
std: 0.01
|
| 539 |
+
}
|
| 540 |
+
bias_filler {
|
| 541 |
+
type: "constant"
|
| 542 |
+
}
|
| 543 |
+
}
|
| 544 |
+
}
|
| 545 |
+
layer {
|
| 546 |
+
name: "relu5_2_CPM_L2"
|
| 547 |
+
type: "ReLU"
|
| 548 |
+
bottom: "conv5_2_CPM_L2"
|
| 549 |
+
top: "conv5_2_CPM_L2"
|
| 550 |
+
}
|
| 551 |
+
layer {
|
| 552 |
+
name: "conv5_3_CPM_L1"
|
| 553 |
+
type: "Convolution"
|
| 554 |
+
bottom: "conv5_2_CPM_L1"
|
| 555 |
+
top: "conv5_3_CPM_L1"
|
| 556 |
+
param {
|
| 557 |
+
lr_mult: 1.0
|
| 558 |
+
decay_mult: 1
|
| 559 |
+
}
|
| 560 |
+
param {
|
| 561 |
+
lr_mult: 2.0
|
| 562 |
+
decay_mult: 0
|
| 563 |
+
}
|
| 564 |
+
convolution_param {
|
| 565 |
+
num_output: 128
|
| 566 |
+
pad: 1
|
| 567 |
+
kernel_size: 3
|
| 568 |
+
weight_filler {
|
| 569 |
+
type: "gaussian"
|
| 570 |
+
std: 0.01
|
| 571 |
+
}
|
| 572 |
+
bias_filler {
|
| 573 |
+
type: "constant"
|
| 574 |
+
}
|
| 575 |
+
}
|
| 576 |
+
}
|
| 577 |
+
layer {
|
| 578 |
+
name: "relu5_3_CPM_L1"
|
| 579 |
+
type: "ReLU"
|
| 580 |
+
bottom: "conv5_3_CPM_L1"
|
| 581 |
+
top: "conv5_3_CPM_L1"
|
| 582 |
+
}
|
| 583 |
+
layer {
|
| 584 |
+
name: "conv5_3_CPM_L2"
|
| 585 |
+
type: "Convolution"
|
| 586 |
+
bottom: "conv5_2_CPM_L2"
|
| 587 |
+
top: "conv5_3_CPM_L2"
|
| 588 |
+
param {
|
| 589 |
+
lr_mult: 1.0
|
| 590 |
+
decay_mult: 1
|
| 591 |
+
}
|
| 592 |
+
param {
|
| 593 |
+
lr_mult: 2.0
|
| 594 |
+
decay_mult: 0
|
| 595 |
+
}
|
| 596 |
+
convolution_param {
|
| 597 |
+
num_output: 128
|
| 598 |
+
pad: 1
|
| 599 |
+
kernel_size: 3
|
| 600 |
+
weight_filler {
|
| 601 |
+
type: "gaussian"
|
| 602 |
+
std: 0.01
|
| 603 |
+
}
|
| 604 |
+
bias_filler {
|
| 605 |
+
type: "constant"
|
| 606 |
+
}
|
| 607 |
+
}
|
| 608 |
+
}
|
| 609 |
+
layer {
|
| 610 |
+
name: "relu5_3_CPM_L2"
|
| 611 |
+
type: "ReLU"
|
| 612 |
+
bottom: "conv5_3_CPM_L2"
|
| 613 |
+
top: "conv5_3_CPM_L2"
|
| 614 |
+
}
|
| 615 |
+
layer {
|
| 616 |
+
name: "conv5_4_CPM_L1"
|
| 617 |
+
type: "Convolution"
|
| 618 |
+
bottom: "conv5_3_CPM_L1"
|
| 619 |
+
top: "conv5_4_CPM_L1"
|
| 620 |
+
param {
|
| 621 |
+
lr_mult: 1.0
|
| 622 |
+
decay_mult: 1
|
| 623 |
+
}
|
| 624 |
+
param {
|
| 625 |
+
lr_mult: 2.0
|
| 626 |
+
decay_mult: 0
|
| 627 |
+
}
|
| 628 |
+
convolution_param {
|
| 629 |
+
num_output: 512
|
| 630 |
+
pad: 0
|
| 631 |
+
kernel_size: 1
|
| 632 |
+
weight_filler {
|
| 633 |
+
type: "gaussian"
|
| 634 |
+
std: 0.01
|
| 635 |
+
}
|
| 636 |
+
bias_filler {
|
| 637 |
+
type: "constant"
|
| 638 |
+
}
|
| 639 |
+
}
|
| 640 |
+
}
|
| 641 |
+
layer {
|
| 642 |
+
name: "relu5_4_CPM_L1"
|
| 643 |
+
type: "ReLU"
|
| 644 |
+
bottom: "conv5_4_CPM_L1"
|
| 645 |
+
top: "conv5_4_CPM_L1"
|
| 646 |
+
}
|
| 647 |
+
layer {
|
| 648 |
+
name: "conv5_4_CPM_L2"
|
| 649 |
+
type: "Convolution"
|
| 650 |
+
bottom: "conv5_3_CPM_L2"
|
| 651 |
+
top: "conv5_4_CPM_L2"
|
| 652 |
+
param {
|
| 653 |
+
lr_mult: 1.0
|
| 654 |
+
decay_mult: 1
|
| 655 |
+
}
|
| 656 |
+
param {
|
| 657 |
+
lr_mult: 2.0
|
| 658 |
+
decay_mult: 0
|
| 659 |
+
}
|
| 660 |
+
convolution_param {
|
| 661 |
+
num_output: 512
|
| 662 |
+
pad: 0
|
| 663 |
+
kernel_size: 1
|
| 664 |
+
weight_filler {
|
| 665 |
+
type: "gaussian"
|
| 666 |
+
std: 0.01
|
| 667 |
+
}
|
| 668 |
+
bias_filler {
|
| 669 |
+
type: "constant"
|
| 670 |
+
}
|
| 671 |
+
}
|
| 672 |
+
}
|
| 673 |
+
layer {
|
| 674 |
+
name: "relu5_4_CPM_L2"
|
| 675 |
+
type: "ReLU"
|
| 676 |
+
bottom: "conv5_4_CPM_L2"
|
| 677 |
+
top: "conv5_4_CPM_L2"
|
| 678 |
+
}
|
| 679 |
+
layer {
|
| 680 |
+
name: "conv5_5_CPM_L1"
|
| 681 |
+
type: "Convolution"
|
| 682 |
+
bottom: "conv5_4_CPM_L1"
|
| 683 |
+
top: "conv5_5_CPM_L1"
|
| 684 |
+
param {
|
| 685 |
+
lr_mult: 1.0
|
| 686 |
+
decay_mult: 1
|
| 687 |
+
}
|
| 688 |
+
param {
|
| 689 |
+
lr_mult: 2.0
|
| 690 |
+
decay_mult: 0
|
| 691 |
+
}
|
| 692 |
+
convolution_param {
|
| 693 |
+
num_output: 38
|
| 694 |
+
pad: 0
|
| 695 |
+
kernel_size: 1
|
| 696 |
+
weight_filler {
|
| 697 |
+
type: "gaussian"
|
| 698 |
+
std: 0.01
|
| 699 |
+
}
|
| 700 |
+
bias_filler {
|
| 701 |
+
type: "constant"
|
| 702 |
+
}
|
| 703 |
+
}
|
| 704 |
+
}
|
| 705 |
+
layer {
|
| 706 |
+
name: "conv5_5_CPM_L2"
|
| 707 |
+
type: "Convolution"
|
| 708 |
+
bottom: "conv5_4_CPM_L2"
|
| 709 |
+
top: "conv5_5_CPM_L2"
|
| 710 |
+
param {
|
| 711 |
+
lr_mult: 1.0
|
| 712 |
+
decay_mult: 1
|
| 713 |
+
}
|
| 714 |
+
param {
|
| 715 |
+
lr_mult: 2.0
|
| 716 |
+
decay_mult: 0
|
| 717 |
+
}
|
| 718 |
+
convolution_param {
|
| 719 |
+
num_output: 19
|
| 720 |
+
pad: 0
|
| 721 |
+
kernel_size: 1
|
| 722 |
+
weight_filler {
|
| 723 |
+
type: "gaussian"
|
| 724 |
+
std: 0.01
|
| 725 |
+
}
|
| 726 |
+
bias_filler {
|
| 727 |
+
type: "constant"
|
| 728 |
+
}
|
| 729 |
+
}
|
| 730 |
+
}
|
| 731 |
+
layer {
|
| 732 |
+
name: "concat_stage2"
|
| 733 |
+
type: "Concat"
|
| 734 |
+
bottom: "conv5_5_CPM_L1"
|
| 735 |
+
bottom: "conv5_5_CPM_L2"
|
| 736 |
+
bottom: "conv4_4_CPM"
|
| 737 |
+
top: "concat_stage2"
|
| 738 |
+
concat_param {
|
| 739 |
+
axis: 1
|
| 740 |
+
}
|
| 741 |
+
}
|
| 742 |
+
layer {
|
| 743 |
+
name: "Mconv1_stage2_L1"
|
| 744 |
+
type: "Convolution"
|
| 745 |
+
bottom: "concat_stage2"
|
| 746 |
+
top: "Mconv1_stage2_L1"
|
| 747 |
+
param {
|
| 748 |
+
lr_mult: 4.0
|
| 749 |
+
decay_mult: 1
|
| 750 |
+
}
|
| 751 |
+
param {
|
| 752 |
+
lr_mult: 8.0
|
| 753 |
+
decay_mult: 0
|
| 754 |
+
}
|
| 755 |
+
convolution_param {
|
| 756 |
+
num_output: 128
|
| 757 |
+
pad: 3
|
| 758 |
+
kernel_size: 7
|
| 759 |
+
weight_filler {
|
| 760 |
+
type: "gaussian"
|
| 761 |
+
std: 0.01
|
| 762 |
+
}
|
| 763 |
+
bias_filler {
|
| 764 |
+
type: "constant"
|
| 765 |
+
}
|
| 766 |
+
}
|
| 767 |
+
}
|
| 768 |
+
layer {
|
| 769 |
+
name: "Mrelu1_stage2_L1"
|
| 770 |
+
type: "ReLU"
|
| 771 |
+
bottom: "Mconv1_stage2_L1"
|
| 772 |
+
top: "Mconv1_stage2_L1"
|
| 773 |
+
}
|
| 774 |
+
layer {
|
| 775 |
+
name: "Mconv1_stage2_L2"
|
| 776 |
+
type: "Convolution"
|
| 777 |
+
bottom: "concat_stage2"
|
| 778 |
+
top: "Mconv1_stage2_L2"
|
| 779 |
+
param {
|
| 780 |
+
lr_mult: 4.0
|
| 781 |
+
decay_mult: 1
|
| 782 |
+
}
|
| 783 |
+
param {
|
| 784 |
+
lr_mult: 8.0
|
| 785 |
+
decay_mult: 0
|
| 786 |
+
}
|
| 787 |
+
convolution_param {
|
| 788 |
+
num_output: 128
|
| 789 |
+
pad: 3
|
| 790 |
+
kernel_size: 7
|
| 791 |
+
weight_filler {
|
| 792 |
+
type: "gaussian"
|
| 793 |
+
std: 0.01
|
| 794 |
+
}
|
| 795 |
+
bias_filler {
|
| 796 |
+
type: "constant"
|
| 797 |
+
}
|
| 798 |
+
}
|
| 799 |
+
}
|
| 800 |
+
layer {
|
| 801 |
+
name: "Mrelu1_stage2_L2"
|
| 802 |
+
type: "ReLU"
|
| 803 |
+
bottom: "Mconv1_stage2_L2"
|
| 804 |
+
top: "Mconv1_stage2_L2"
|
| 805 |
+
}
|
| 806 |
+
layer {
|
| 807 |
+
name: "Mconv2_stage2_L1"
|
| 808 |
+
type: "Convolution"
|
| 809 |
+
bottom: "Mconv1_stage2_L1"
|
| 810 |
+
top: "Mconv2_stage2_L1"
|
| 811 |
+
param {
|
| 812 |
+
lr_mult: 4.0
|
| 813 |
+
decay_mult: 1
|
| 814 |
+
}
|
| 815 |
+
param {
|
| 816 |
+
lr_mult: 8.0
|
| 817 |
+
decay_mult: 0
|
| 818 |
+
}
|
| 819 |
+
convolution_param {
|
| 820 |
+
num_output: 128
|
| 821 |
+
pad: 3
|
| 822 |
+
kernel_size: 7
|
| 823 |
+
weight_filler {
|
| 824 |
+
type: "gaussian"
|
| 825 |
+
std: 0.01
|
| 826 |
+
}
|
| 827 |
+
bias_filler {
|
| 828 |
+
type: "constant"
|
| 829 |
+
}
|
| 830 |
+
}
|
| 831 |
+
}
|
| 832 |
+
layer {
|
| 833 |
+
name: "Mrelu2_stage2_L1"
|
| 834 |
+
type: "ReLU"
|
| 835 |
+
bottom: "Mconv2_stage2_L1"
|
| 836 |
+
top: "Mconv2_stage2_L1"
|
| 837 |
+
}
|
| 838 |
+
layer {
|
| 839 |
+
name: "Mconv2_stage2_L2"
|
| 840 |
+
type: "Convolution"
|
| 841 |
+
bottom: "Mconv1_stage2_L2"
|
| 842 |
+
top: "Mconv2_stage2_L2"
|
| 843 |
+
param {
|
| 844 |
+
lr_mult: 4.0
|
| 845 |
+
decay_mult: 1
|
| 846 |
+
}
|
| 847 |
+
param {
|
| 848 |
+
lr_mult: 8.0
|
| 849 |
+
decay_mult: 0
|
| 850 |
+
}
|
| 851 |
+
convolution_param {
|
| 852 |
+
num_output: 128
|
| 853 |
+
pad: 3
|
| 854 |
+
kernel_size: 7
|
| 855 |
+
weight_filler {
|
| 856 |
+
type: "gaussian"
|
| 857 |
+
std: 0.01
|
| 858 |
+
}
|
| 859 |
+
bias_filler {
|
| 860 |
+
type: "constant"
|
| 861 |
+
}
|
| 862 |
+
}
|
| 863 |
+
}
|
| 864 |
+
layer {
|
| 865 |
+
name: "Mrelu2_stage2_L2"
|
| 866 |
+
type: "ReLU"
|
| 867 |
+
bottom: "Mconv2_stage2_L2"
|
| 868 |
+
top: "Mconv2_stage2_L2"
|
| 869 |
+
}
|
| 870 |
+
layer {
|
| 871 |
+
name: "Mconv3_stage2_L1"
|
| 872 |
+
type: "Convolution"
|
| 873 |
+
bottom: "Mconv2_stage2_L1"
|
| 874 |
+
top: "Mconv3_stage2_L1"
|
| 875 |
+
param {
|
| 876 |
+
lr_mult: 4.0
|
| 877 |
+
decay_mult: 1
|
| 878 |
+
}
|
| 879 |
+
param {
|
| 880 |
+
lr_mult: 8.0
|
| 881 |
+
decay_mult: 0
|
| 882 |
+
}
|
| 883 |
+
convolution_param {
|
| 884 |
+
num_output: 128
|
| 885 |
+
pad: 3
|
| 886 |
+
kernel_size: 7
|
| 887 |
+
weight_filler {
|
| 888 |
+
type: "gaussian"
|
| 889 |
+
std: 0.01
|
| 890 |
+
}
|
| 891 |
+
bias_filler {
|
| 892 |
+
type: "constant"
|
| 893 |
+
}
|
| 894 |
+
}
|
| 895 |
+
}
|
| 896 |
+
layer {
|
| 897 |
+
name: "Mrelu3_stage2_L1"
|
| 898 |
+
type: "ReLU"
|
| 899 |
+
bottom: "Mconv3_stage2_L1"
|
| 900 |
+
top: "Mconv3_stage2_L1"
|
| 901 |
+
}
|
| 902 |
+
layer {
|
| 903 |
+
name: "Mconv3_stage2_L2"
|
| 904 |
+
type: "Convolution"
|
| 905 |
+
bottom: "Mconv2_stage2_L2"
|
| 906 |
+
top: "Mconv3_stage2_L2"
|
| 907 |
+
param {
|
| 908 |
+
lr_mult: 4.0
|
| 909 |
+
decay_mult: 1
|
| 910 |
+
}
|
| 911 |
+
param {
|
| 912 |
+
lr_mult: 8.0
|
| 913 |
+
decay_mult: 0
|
| 914 |
+
}
|
| 915 |
+
convolution_param {
|
| 916 |
+
num_output: 128
|
| 917 |
+
pad: 3
|
| 918 |
+
kernel_size: 7
|
| 919 |
+
weight_filler {
|
| 920 |
+
type: "gaussian"
|
| 921 |
+
std: 0.01
|
| 922 |
+
}
|
| 923 |
+
bias_filler {
|
| 924 |
+
type: "constant"
|
| 925 |
+
}
|
| 926 |
+
}
|
| 927 |
+
}
|
| 928 |
+
layer {
|
| 929 |
+
name: "Mrelu3_stage2_L2"
|
| 930 |
+
type: "ReLU"
|
| 931 |
+
bottom: "Mconv3_stage2_L2"
|
| 932 |
+
top: "Mconv3_stage2_L2"
|
| 933 |
+
}
|
| 934 |
+
layer {
|
| 935 |
+
name: "Mconv4_stage2_L1"
|
| 936 |
+
type: "Convolution"
|
| 937 |
+
bottom: "Mconv3_stage2_L1"
|
| 938 |
+
top: "Mconv4_stage2_L1"
|
| 939 |
+
param {
|
| 940 |
+
lr_mult: 4.0
|
| 941 |
+
decay_mult: 1
|
| 942 |
+
}
|
| 943 |
+
param {
|
| 944 |
+
lr_mult: 8.0
|
| 945 |
+
decay_mult: 0
|
| 946 |
+
}
|
| 947 |
+
convolution_param {
|
| 948 |
+
num_output: 128
|
| 949 |
+
pad: 3
|
| 950 |
+
kernel_size: 7
|
| 951 |
+
weight_filler {
|
| 952 |
+
type: "gaussian"
|
| 953 |
+
std: 0.01
|
| 954 |
+
}
|
| 955 |
+
bias_filler {
|
| 956 |
+
type: "constant"
|
| 957 |
+
}
|
| 958 |
+
}
|
| 959 |
+
}
|
| 960 |
+
layer {
|
| 961 |
+
name: "Mrelu4_stage2_L1"
|
| 962 |
+
type: "ReLU"
|
| 963 |
+
bottom: "Mconv4_stage2_L1"
|
| 964 |
+
top: "Mconv4_stage2_L1"
|
| 965 |
+
}
|
| 966 |
+
layer {
|
| 967 |
+
name: "Mconv4_stage2_L2"
|
| 968 |
+
type: "Convolution"
|
| 969 |
+
bottom: "Mconv3_stage2_L2"
|
| 970 |
+
top: "Mconv4_stage2_L2"
|
| 971 |
+
param {
|
| 972 |
+
lr_mult: 4.0
|
| 973 |
+
decay_mult: 1
|
| 974 |
+
}
|
| 975 |
+
param {
|
| 976 |
+
lr_mult: 8.0
|
| 977 |
+
decay_mult: 0
|
| 978 |
+
}
|
| 979 |
+
convolution_param {
|
| 980 |
+
num_output: 128
|
| 981 |
+
pad: 3
|
| 982 |
+
kernel_size: 7
|
| 983 |
+
weight_filler {
|
| 984 |
+
type: "gaussian"
|
| 985 |
+
std: 0.01
|
| 986 |
+
}
|
| 987 |
+
bias_filler {
|
| 988 |
+
type: "constant"
|
| 989 |
+
}
|
| 990 |
+
}
|
| 991 |
+
}
|
| 992 |
+
layer {
|
| 993 |
+
name: "Mrelu4_stage2_L2"
|
| 994 |
+
type: "ReLU"
|
| 995 |
+
bottom: "Mconv4_stage2_L2"
|
| 996 |
+
top: "Mconv4_stage2_L2"
|
| 997 |
+
}
|
| 998 |
+
layer {
|
| 999 |
+
name: "Mconv5_stage2_L1"
|
| 1000 |
+
type: "Convolution"
|
| 1001 |
+
bottom: "Mconv4_stage2_L1"
|
| 1002 |
+
top: "Mconv5_stage2_L1"
|
| 1003 |
+
param {
|
| 1004 |
+
lr_mult: 4.0
|
| 1005 |
+
decay_mult: 1
|
| 1006 |
+
}
|
| 1007 |
+
param {
|
| 1008 |
+
lr_mult: 8.0
|
| 1009 |
+
decay_mult: 0
|
| 1010 |
+
}
|
| 1011 |
+
convolution_param {
|
| 1012 |
+
num_output: 128
|
| 1013 |
+
pad: 3
|
| 1014 |
+
kernel_size: 7
|
| 1015 |
+
weight_filler {
|
| 1016 |
+
type: "gaussian"
|
| 1017 |
+
std: 0.01
|
| 1018 |
+
}
|
| 1019 |
+
bias_filler {
|
| 1020 |
+
type: "constant"
|
| 1021 |
+
}
|
| 1022 |
+
}
|
| 1023 |
+
}
|
| 1024 |
+
layer {
|
| 1025 |
+
name: "Mrelu5_stage2_L1"
|
| 1026 |
+
type: "ReLU"
|
| 1027 |
+
bottom: "Mconv5_stage2_L1"
|
| 1028 |
+
top: "Mconv5_stage2_L1"
|
| 1029 |
+
}
|
| 1030 |
+
layer {
|
| 1031 |
+
name: "Mconv5_stage2_L2"
|
| 1032 |
+
type: "Convolution"
|
| 1033 |
+
bottom: "Mconv4_stage2_L2"
|
| 1034 |
+
top: "Mconv5_stage2_L2"
|
| 1035 |
+
param {
|
| 1036 |
+
lr_mult: 4.0
|
| 1037 |
+
decay_mult: 1
|
| 1038 |
+
}
|
| 1039 |
+
param {
|
| 1040 |
+
lr_mult: 8.0
|
| 1041 |
+
decay_mult: 0
|
| 1042 |
+
}
|
| 1043 |
+
convolution_param {
|
| 1044 |
+
num_output: 128
|
| 1045 |
+
pad: 3
|
| 1046 |
+
kernel_size: 7
|
| 1047 |
+
weight_filler {
|
| 1048 |
+
type: "gaussian"
|
| 1049 |
+
std: 0.01
|
| 1050 |
+
}
|
| 1051 |
+
bias_filler {
|
| 1052 |
+
type: "constant"
|
| 1053 |
+
}
|
| 1054 |
+
}
|
| 1055 |
+
}
|
| 1056 |
+
layer {
|
| 1057 |
+
name: "Mrelu5_stage2_L2"
|
| 1058 |
+
type: "ReLU"
|
| 1059 |
+
bottom: "Mconv5_stage2_L2"
|
| 1060 |
+
top: "Mconv5_stage2_L2"
|
| 1061 |
+
}
|
| 1062 |
+
layer {
|
| 1063 |
+
name: "Mconv6_stage2_L1"
|
| 1064 |
+
type: "Convolution"
|
| 1065 |
+
bottom: "Mconv5_stage2_L1"
|
| 1066 |
+
top: "Mconv6_stage2_L1"
|
| 1067 |
+
param {
|
| 1068 |
+
lr_mult: 4.0
|
| 1069 |
+
decay_mult: 1
|
| 1070 |
+
}
|
| 1071 |
+
param {
|
| 1072 |
+
lr_mult: 8.0
|
| 1073 |
+
decay_mult: 0
|
| 1074 |
+
}
|
| 1075 |
+
convolution_param {
|
| 1076 |
+
num_output: 128
|
| 1077 |
+
pad: 0
|
| 1078 |
+
kernel_size: 1
|
| 1079 |
+
weight_filler {
|
| 1080 |
+
type: "gaussian"
|
| 1081 |
+
std: 0.01
|
| 1082 |
+
}
|
| 1083 |
+
bias_filler {
|
| 1084 |
+
type: "constant"
|
| 1085 |
+
}
|
| 1086 |
+
}
|
| 1087 |
+
}
|
| 1088 |
+
layer {
|
| 1089 |
+
name: "Mrelu6_stage2_L1"
|
| 1090 |
+
type: "ReLU"
|
| 1091 |
+
bottom: "Mconv6_stage2_L1"
|
| 1092 |
+
top: "Mconv6_stage2_L1"
|
| 1093 |
+
}
|
| 1094 |
+
layer {
|
| 1095 |
+
name: "Mconv6_stage2_L2"
|
| 1096 |
+
type: "Convolution"
|
| 1097 |
+
bottom: "Mconv5_stage2_L2"
|
| 1098 |
+
top: "Mconv6_stage2_L2"
|
| 1099 |
+
param {
|
| 1100 |
+
lr_mult: 4.0
|
| 1101 |
+
decay_mult: 1
|
| 1102 |
+
}
|
| 1103 |
+
param {
|
| 1104 |
+
lr_mult: 8.0
|
| 1105 |
+
decay_mult: 0
|
| 1106 |
+
}
|
| 1107 |
+
convolution_param {
|
| 1108 |
+
num_output: 128
|
| 1109 |
+
pad: 0
|
| 1110 |
+
kernel_size: 1
|
| 1111 |
+
weight_filler {
|
| 1112 |
+
type: "gaussian"
|
| 1113 |
+
std: 0.01
|
| 1114 |
+
}
|
| 1115 |
+
bias_filler {
|
| 1116 |
+
type: "constant"
|
| 1117 |
+
}
|
| 1118 |
+
}
|
| 1119 |
+
}
|
| 1120 |
+
layer {
|
| 1121 |
+
name: "Mrelu6_stage2_L2"
|
| 1122 |
+
type: "ReLU"
|
| 1123 |
+
bottom: "Mconv6_stage2_L2"
|
| 1124 |
+
top: "Mconv6_stage2_L2"
|
| 1125 |
+
}
|
| 1126 |
+
layer {
|
| 1127 |
+
name: "Mconv7_stage2_L1"
|
| 1128 |
+
type: "Convolution"
|
| 1129 |
+
bottom: "Mconv6_stage2_L1"
|
| 1130 |
+
top: "Mconv7_stage2_L1"
|
| 1131 |
+
param {
|
| 1132 |
+
lr_mult: 4.0
|
| 1133 |
+
decay_mult: 1
|
| 1134 |
+
}
|
| 1135 |
+
param {
|
| 1136 |
+
lr_mult: 8.0
|
| 1137 |
+
decay_mult: 0
|
| 1138 |
+
}
|
| 1139 |
+
convolution_param {
|
| 1140 |
+
num_output: 38
|
| 1141 |
+
pad: 0
|
| 1142 |
+
kernel_size: 1
|
| 1143 |
+
weight_filler {
|
| 1144 |
+
type: "gaussian"
|
| 1145 |
+
std: 0.01
|
| 1146 |
+
}
|
| 1147 |
+
bias_filler {
|
| 1148 |
+
type: "constant"
|
| 1149 |
+
}
|
| 1150 |
+
}
|
| 1151 |
+
}
|
| 1152 |
+
layer {
|
| 1153 |
+
name: "Mconv7_stage2_L2"
|
| 1154 |
+
type: "Convolution"
|
| 1155 |
+
bottom: "Mconv6_stage2_L2"
|
| 1156 |
+
top: "Mconv7_stage2_L2"
|
| 1157 |
+
param {
|
| 1158 |
+
lr_mult: 4.0
|
| 1159 |
+
decay_mult: 1
|
| 1160 |
+
}
|
| 1161 |
+
param {
|
| 1162 |
+
lr_mult: 8.0
|
| 1163 |
+
decay_mult: 0
|
| 1164 |
+
}
|
| 1165 |
+
convolution_param {
|
| 1166 |
+
num_output: 19
|
| 1167 |
+
pad: 0
|
| 1168 |
+
kernel_size: 1
|
| 1169 |
+
weight_filler {
|
| 1170 |
+
type: "gaussian"
|
| 1171 |
+
std: 0.01
|
| 1172 |
+
}
|
| 1173 |
+
bias_filler {
|
| 1174 |
+
type: "constant"
|
| 1175 |
+
}
|
| 1176 |
+
}
|
| 1177 |
+
}
|
| 1178 |
+
layer {
|
| 1179 |
+
name: "concat_stage3"
|
| 1180 |
+
type: "Concat"
|
| 1181 |
+
bottom: "Mconv7_stage2_L1"
|
| 1182 |
+
bottom: "Mconv7_stage2_L2"
|
| 1183 |
+
bottom: "conv4_4_CPM"
|
| 1184 |
+
top: "concat_stage3"
|
| 1185 |
+
concat_param {
|
| 1186 |
+
axis: 1
|
| 1187 |
+
}
|
| 1188 |
+
}
|
| 1189 |
+
layer {
|
| 1190 |
+
name: "Mconv1_stage3_L1"
|
| 1191 |
+
type: "Convolution"
|
| 1192 |
+
bottom: "concat_stage3"
|
| 1193 |
+
top: "Mconv1_stage3_L1"
|
| 1194 |
+
param {
|
| 1195 |
+
lr_mult: 4.0
|
| 1196 |
+
decay_mult: 1
|
| 1197 |
+
}
|
| 1198 |
+
param {
|
| 1199 |
+
lr_mult: 8.0
|
| 1200 |
+
decay_mult: 0
|
| 1201 |
+
}
|
| 1202 |
+
convolution_param {
|
| 1203 |
+
num_output: 128
|
| 1204 |
+
pad: 3
|
| 1205 |
+
kernel_size: 7
|
| 1206 |
+
weight_filler {
|
| 1207 |
+
type: "gaussian"
|
| 1208 |
+
std: 0.01
|
| 1209 |
+
}
|
| 1210 |
+
bias_filler {
|
| 1211 |
+
type: "constant"
|
| 1212 |
+
}
|
| 1213 |
+
}
|
| 1214 |
+
}
|
| 1215 |
+
layer {
|
| 1216 |
+
name: "Mrelu1_stage3_L1"
|
| 1217 |
+
type: "ReLU"
|
| 1218 |
+
bottom: "Mconv1_stage3_L1"
|
| 1219 |
+
top: "Mconv1_stage3_L1"
|
| 1220 |
+
}
|
| 1221 |
+
layer {
|
| 1222 |
+
name: "Mconv1_stage3_L2"
|
| 1223 |
+
type: "Convolution"
|
| 1224 |
+
bottom: "concat_stage3"
|
| 1225 |
+
top: "Mconv1_stage3_L2"
|
| 1226 |
+
param {
|
| 1227 |
+
lr_mult: 4.0
|
| 1228 |
+
decay_mult: 1
|
| 1229 |
+
}
|
| 1230 |
+
param {
|
| 1231 |
+
lr_mult: 8.0
|
| 1232 |
+
decay_mult: 0
|
| 1233 |
+
}
|
| 1234 |
+
convolution_param {
|
| 1235 |
+
num_output: 128
|
| 1236 |
+
pad: 3
|
| 1237 |
+
kernel_size: 7
|
| 1238 |
+
weight_filler {
|
| 1239 |
+
type: "gaussian"
|
| 1240 |
+
std: 0.01
|
| 1241 |
+
}
|
| 1242 |
+
bias_filler {
|
| 1243 |
+
type: "constant"
|
| 1244 |
+
}
|
| 1245 |
+
}
|
| 1246 |
+
}
|
| 1247 |
+
layer {
|
| 1248 |
+
name: "Mrelu1_stage3_L2"
|
| 1249 |
+
type: "ReLU"
|
| 1250 |
+
bottom: "Mconv1_stage3_L2"
|
| 1251 |
+
top: "Mconv1_stage3_L2"
|
| 1252 |
+
}
|
| 1253 |
+
layer {
|
| 1254 |
+
name: "Mconv2_stage3_L1"
|
| 1255 |
+
type: "Convolution"
|
| 1256 |
+
bottom: "Mconv1_stage3_L1"
|
| 1257 |
+
top: "Mconv2_stage3_L1"
|
| 1258 |
+
param {
|
| 1259 |
+
lr_mult: 4.0
|
| 1260 |
+
decay_mult: 1
|
| 1261 |
+
}
|
| 1262 |
+
param {
|
| 1263 |
+
lr_mult: 8.0
|
| 1264 |
+
decay_mult: 0
|
| 1265 |
+
}
|
| 1266 |
+
convolution_param {
|
| 1267 |
+
num_output: 128
|
| 1268 |
+
pad: 3
|
| 1269 |
+
kernel_size: 7
|
| 1270 |
+
weight_filler {
|
| 1271 |
+
type: "gaussian"
|
| 1272 |
+
std: 0.01
|
| 1273 |
+
}
|
| 1274 |
+
bias_filler {
|
| 1275 |
+
type: "constant"
|
| 1276 |
+
}
|
| 1277 |
+
}
|
| 1278 |
+
}
|
| 1279 |
+
layer {
|
| 1280 |
+
name: "Mrelu2_stage3_L1"
|
| 1281 |
+
type: "ReLU"
|
| 1282 |
+
bottom: "Mconv2_stage3_L1"
|
| 1283 |
+
top: "Mconv2_stage3_L1"
|
| 1284 |
+
}
|
| 1285 |
+
layer {
|
| 1286 |
+
name: "Mconv2_stage3_L2"
|
| 1287 |
+
type: "Convolution"
|
| 1288 |
+
bottom: "Mconv1_stage3_L2"
|
| 1289 |
+
top: "Mconv2_stage3_L2"
|
| 1290 |
+
param {
|
| 1291 |
+
lr_mult: 4.0
|
| 1292 |
+
decay_mult: 1
|
| 1293 |
+
}
|
| 1294 |
+
param {
|
| 1295 |
+
lr_mult: 8.0
|
| 1296 |
+
decay_mult: 0
|
| 1297 |
+
}
|
| 1298 |
+
convolution_param {
|
| 1299 |
+
num_output: 128
|
| 1300 |
+
pad: 3
|
| 1301 |
+
kernel_size: 7
|
| 1302 |
+
weight_filler {
|
| 1303 |
+
type: "gaussian"
|
| 1304 |
+
std: 0.01
|
| 1305 |
+
}
|
| 1306 |
+
bias_filler {
|
| 1307 |
+
type: "constant"
|
| 1308 |
+
}
|
| 1309 |
+
}
|
| 1310 |
+
}
|
| 1311 |
+
layer {
|
| 1312 |
+
name: "Mrelu2_stage3_L2"
|
| 1313 |
+
type: "ReLU"
|
| 1314 |
+
bottom: "Mconv2_stage3_L2"
|
| 1315 |
+
top: "Mconv2_stage3_L2"
|
| 1316 |
+
}
|
| 1317 |
+
layer {
|
| 1318 |
+
name: "Mconv3_stage3_L1"
|
| 1319 |
+
type: "Convolution"
|
| 1320 |
+
bottom: "Mconv2_stage3_L1"
|
| 1321 |
+
top: "Mconv3_stage3_L1"
|
| 1322 |
+
param {
|
| 1323 |
+
lr_mult: 4.0
|
| 1324 |
+
decay_mult: 1
|
| 1325 |
+
}
|
| 1326 |
+
param {
|
| 1327 |
+
lr_mult: 8.0
|
| 1328 |
+
decay_mult: 0
|
| 1329 |
+
}
|
| 1330 |
+
convolution_param {
|
| 1331 |
+
num_output: 128
|
| 1332 |
+
pad: 3
|
| 1333 |
+
kernel_size: 7
|
| 1334 |
+
weight_filler {
|
| 1335 |
+
type: "gaussian"
|
| 1336 |
+
std: 0.01
|
| 1337 |
+
}
|
| 1338 |
+
bias_filler {
|
| 1339 |
+
type: "constant"
|
| 1340 |
+
}
|
| 1341 |
+
}
|
| 1342 |
+
}
|
| 1343 |
+
layer {
|
| 1344 |
+
name: "Mrelu3_stage3_L1"
|
| 1345 |
+
type: "ReLU"
|
| 1346 |
+
bottom: "Mconv3_stage3_L1"
|
| 1347 |
+
top: "Mconv3_stage3_L1"
|
| 1348 |
+
}
|
| 1349 |
+
layer {
|
| 1350 |
+
name: "Mconv3_stage3_L2"
|
| 1351 |
+
type: "Convolution"
|
| 1352 |
+
bottom: "Mconv2_stage3_L2"
|
| 1353 |
+
top: "Mconv3_stage3_L2"
|
| 1354 |
+
param {
|
| 1355 |
+
lr_mult: 4.0
|
| 1356 |
+
decay_mult: 1
|
| 1357 |
+
}
|
| 1358 |
+
param {
|
| 1359 |
+
lr_mult: 8.0
|
| 1360 |
+
decay_mult: 0
|
| 1361 |
+
}
|
| 1362 |
+
convolution_param {
|
| 1363 |
+
num_output: 128
|
| 1364 |
+
pad: 3
|
| 1365 |
+
kernel_size: 7
|
| 1366 |
+
weight_filler {
|
| 1367 |
+
type: "gaussian"
|
| 1368 |
+
std: 0.01
|
| 1369 |
+
}
|
| 1370 |
+
bias_filler {
|
| 1371 |
+
type: "constant"
|
| 1372 |
+
}
|
| 1373 |
+
}
|
| 1374 |
+
}
|
| 1375 |
+
layer {
|
| 1376 |
+
name: "Mrelu3_stage3_L2"
|
| 1377 |
+
type: "ReLU"
|
| 1378 |
+
bottom: "Mconv3_stage3_L2"
|
| 1379 |
+
top: "Mconv3_stage3_L2"
|
| 1380 |
+
}
|
| 1381 |
+
layer {
|
| 1382 |
+
name: "Mconv4_stage3_L1"
|
| 1383 |
+
type: "Convolution"
|
| 1384 |
+
bottom: "Mconv3_stage3_L1"
|
| 1385 |
+
top: "Mconv4_stage3_L1"
|
| 1386 |
+
param {
|
| 1387 |
+
lr_mult: 4.0
|
| 1388 |
+
decay_mult: 1
|
| 1389 |
+
}
|
| 1390 |
+
param {
|
| 1391 |
+
lr_mult: 8.0
|
| 1392 |
+
decay_mult: 0
|
| 1393 |
+
}
|
| 1394 |
+
convolution_param {
|
| 1395 |
+
num_output: 128
|
| 1396 |
+
pad: 3
|
| 1397 |
+
kernel_size: 7
|
| 1398 |
+
weight_filler {
|
| 1399 |
+
type: "gaussian"
|
| 1400 |
+
std: 0.01
|
| 1401 |
+
}
|
| 1402 |
+
bias_filler {
|
| 1403 |
+
type: "constant"
|
| 1404 |
+
}
|
| 1405 |
+
}
|
| 1406 |
+
}
|
| 1407 |
+
layer {
|
| 1408 |
+
name: "Mrelu4_stage3_L1"
|
| 1409 |
+
type: "ReLU"
|
| 1410 |
+
bottom: "Mconv4_stage3_L1"
|
| 1411 |
+
top: "Mconv4_stage3_L1"
|
| 1412 |
+
}
|
| 1413 |
+
layer {
|
| 1414 |
+
name: "Mconv4_stage3_L2"
|
| 1415 |
+
type: "Convolution"
|
| 1416 |
+
bottom: "Mconv3_stage3_L2"
|
| 1417 |
+
top: "Mconv4_stage3_L2"
|
| 1418 |
+
param {
|
| 1419 |
+
lr_mult: 4.0
|
| 1420 |
+
decay_mult: 1
|
| 1421 |
+
}
|
| 1422 |
+
param {
|
| 1423 |
+
lr_mult: 8.0
|
| 1424 |
+
decay_mult: 0
|
| 1425 |
+
}
|
| 1426 |
+
convolution_param {
|
| 1427 |
+
num_output: 128
|
| 1428 |
+
pad: 3
|
| 1429 |
+
kernel_size: 7
|
| 1430 |
+
weight_filler {
|
| 1431 |
+
type: "gaussian"
|
| 1432 |
+
std: 0.01
|
| 1433 |
+
}
|
| 1434 |
+
bias_filler {
|
| 1435 |
+
type: "constant"
|
| 1436 |
+
}
|
| 1437 |
+
}
|
| 1438 |
+
}
|
| 1439 |
+
layer {
|
| 1440 |
+
name: "Mrelu4_stage3_L2"
|
| 1441 |
+
type: "ReLU"
|
| 1442 |
+
bottom: "Mconv4_stage3_L2"
|
| 1443 |
+
top: "Mconv4_stage3_L2"
|
| 1444 |
+
}
|
| 1445 |
+
layer {
|
| 1446 |
+
name: "Mconv5_stage3_L1"
|
| 1447 |
+
type: "Convolution"
|
| 1448 |
+
bottom: "Mconv4_stage3_L1"
|
| 1449 |
+
top: "Mconv5_stage3_L1"
|
| 1450 |
+
param {
|
| 1451 |
+
lr_mult: 4.0
|
| 1452 |
+
decay_mult: 1
|
| 1453 |
+
}
|
| 1454 |
+
param {
|
| 1455 |
+
lr_mult: 8.0
|
| 1456 |
+
decay_mult: 0
|
| 1457 |
+
}
|
| 1458 |
+
convolution_param {
|
| 1459 |
+
num_output: 128
|
| 1460 |
+
pad: 3
|
| 1461 |
+
kernel_size: 7
|
| 1462 |
+
weight_filler {
|
| 1463 |
+
type: "gaussian"
|
| 1464 |
+
std: 0.01
|
| 1465 |
+
}
|
| 1466 |
+
bias_filler {
|
| 1467 |
+
type: "constant"
|
| 1468 |
+
}
|
| 1469 |
+
}
|
| 1470 |
+
}
|
| 1471 |
+
layer {
|
| 1472 |
+
name: "Mrelu5_stage3_L1"
|
| 1473 |
+
type: "ReLU"
|
| 1474 |
+
bottom: "Mconv5_stage3_L1"
|
| 1475 |
+
top: "Mconv5_stage3_L1"
|
| 1476 |
+
}
|
| 1477 |
+
layer {
|
| 1478 |
+
name: "Mconv5_stage3_L2"
|
| 1479 |
+
type: "Convolution"
|
| 1480 |
+
bottom: "Mconv4_stage3_L2"
|
| 1481 |
+
top: "Mconv5_stage3_L2"
|
| 1482 |
+
param {
|
| 1483 |
+
lr_mult: 4.0
|
| 1484 |
+
decay_mult: 1
|
| 1485 |
+
}
|
| 1486 |
+
param {
|
| 1487 |
+
lr_mult: 8.0
|
| 1488 |
+
decay_mult: 0
|
| 1489 |
+
}
|
| 1490 |
+
convolution_param {
|
| 1491 |
+
num_output: 128
|
| 1492 |
+
pad: 3
|
| 1493 |
+
kernel_size: 7
|
| 1494 |
+
weight_filler {
|
| 1495 |
+
type: "gaussian"
|
| 1496 |
+
std: 0.01
|
| 1497 |
+
}
|
| 1498 |
+
bias_filler {
|
| 1499 |
+
type: "constant"
|
| 1500 |
+
}
|
| 1501 |
+
}
|
| 1502 |
+
}
|
| 1503 |
+
layer {
|
| 1504 |
+
name: "Mrelu5_stage3_L2"
|
| 1505 |
+
type: "ReLU"
|
| 1506 |
+
bottom: "Mconv5_stage3_L2"
|
| 1507 |
+
top: "Mconv5_stage3_L2"
|
| 1508 |
+
}
|
| 1509 |
+
layer {
|
| 1510 |
+
name: "Mconv6_stage3_L1"
|
| 1511 |
+
type: "Convolution"
|
| 1512 |
+
bottom: "Mconv5_stage3_L1"
|
| 1513 |
+
top: "Mconv6_stage3_L1"
|
| 1514 |
+
param {
|
| 1515 |
+
lr_mult: 4.0
|
| 1516 |
+
decay_mult: 1
|
| 1517 |
+
}
|
| 1518 |
+
param {
|
| 1519 |
+
lr_mult: 8.0
|
| 1520 |
+
decay_mult: 0
|
| 1521 |
+
}
|
| 1522 |
+
convolution_param {
|
| 1523 |
+
num_output: 128
|
| 1524 |
+
pad: 0
|
| 1525 |
+
kernel_size: 1
|
| 1526 |
+
weight_filler {
|
| 1527 |
+
type: "gaussian"
|
| 1528 |
+
std: 0.01
|
| 1529 |
+
}
|
| 1530 |
+
bias_filler {
|
| 1531 |
+
type: "constant"
|
| 1532 |
+
}
|
| 1533 |
+
}
|
| 1534 |
+
}
|
| 1535 |
+
layer {
|
| 1536 |
+
name: "Mrelu6_stage3_L1"
|
| 1537 |
+
type: "ReLU"
|
| 1538 |
+
bottom: "Mconv6_stage3_L1"
|
| 1539 |
+
top: "Mconv6_stage3_L1"
|
| 1540 |
+
}
|
| 1541 |
+
layer {
|
| 1542 |
+
name: "Mconv6_stage3_L2"
|
| 1543 |
+
type: "Convolution"
|
| 1544 |
+
bottom: "Mconv5_stage3_L2"
|
| 1545 |
+
top: "Mconv6_stage3_L2"
|
| 1546 |
+
param {
|
| 1547 |
+
lr_mult: 4.0
|
| 1548 |
+
decay_mult: 1
|
| 1549 |
+
}
|
| 1550 |
+
param {
|
| 1551 |
+
lr_mult: 8.0
|
| 1552 |
+
decay_mult: 0
|
| 1553 |
+
}
|
| 1554 |
+
convolution_param {
|
| 1555 |
+
num_output: 128
|
| 1556 |
+
pad: 0
|
| 1557 |
+
kernel_size: 1
|
| 1558 |
+
weight_filler {
|
| 1559 |
+
type: "gaussian"
|
| 1560 |
+
std: 0.01
|
| 1561 |
+
}
|
| 1562 |
+
bias_filler {
|
| 1563 |
+
type: "constant"
|
| 1564 |
+
}
|
| 1565 |
+
}
|
| 1566 |
+
}
|
| 1567 |
+
layer {
|
| 1568 |
+
name: "Mrelu6_stage3_L2"
|
| 1569 |
+
type: "ReLU"
|
| 1570 |
+
bottom: "Mconv6_stage3_L2"
|
| 1571 |
+
top: "Mconv6_stage3_L2"
|
| 1572 |
+
}
|
| 1573 |
+
layer {
|
| 1574 |
+
name: "Mconv7_stage3_L1"
|
| 1575 |
+
type: "Convolution"
|
| 1576 |
+
bottom: "Mconv6_stage3_L1"
|
| 1577 |
+
top: "Mconv7_stage3_L1"
|
| 1578 |
+
param {
|
| 1579 |
+
lr_mult: 4.0
|
| 1580 |
+
decay_mult: 1
|
| 1581 |
+
}
|
| 1582 |
+
param {
|
| 1583 |
+
lr_mult: 8.0
|
| 1584 |
+
decay_mult: 0
|
| 1585 |
+
}
|
| 1586 |
+
convolution_param {
|
| 1587 |
+
num_output: 38
|
| 1588 |
+
pad: 0
|
| 1589 |
+
kernel_size: 1
|
| 1590 |
+
weight_filler {
|
| 1591 |
+
type: "gaussian"
|
| 1592 |
+
std: 0.01
|
| 1593 |
+
}
|
| 1594 |
+
bias_filler {
|
| 1595 |
+
type: "constant"
|
| 1596 |
+
}
|
| 1597 |
+
}
|
| 1598 |
+
}
|
| 1599 |
+
layer {
|
| 1600 |
+
name: "Mconv7_stage3_L2"
|
| 1601 |
+
type: "Convolution"
|
| 1602 |
+
bottom: "Mconv6_stage3_L2"
|
| 1603 |
+
top: "Mconv7_stage3_L2"
|
| 1604 |
+
param {
|
| 1605 |
+
lr_mult: 4.0
|
| 1606 |
+
decay_mult: 1
|
| 1607 |
+
}
|
| 1608 |
+
param {
|
| 1609 |
+
lr_mult: 8.0
|
| 1610 |
+
decay_mult: 0
|
| 1611 |
+
}
|
| 1612 |
+
convolution_param {
|
| 1613 |
+
num_output: 19
|
| 1614 |
+
pad: 0
|
| 1615 |
+
kernel_size: 1
|
| 1616 |
+
weight_filler {
|
| 1617 |
+
type: "gaussian"
|
| 1618 |
+
std: 0.01
|
| 1619 |
+
}
|
| 1620 |
+
bias_filler {
|
| 1621 |
+
type: "constant"
|
| 1622 |
+
}
|
| 1623 |
+
}
|
| 1624 |
+
}
|
| 1625 |
+
layer {
|
| 1626 |
+
name: "concat_stage4"
|
| 1627 |
+
type: "Concat"
|
| 1628 |
+
bottom: "Mconv7_stage3_L1"
|
| 1629 |
+
bottom: "Mconv7_stage3_L2"
|
| 1630 |
+
bottom: "conv4_4_CPM"
|
| 1631 |
+
top: "concat_stage4"
|
| 1632 |
+
concat_param {
|
| 1633 |
+
axis: 1
|
| 1634 |
+
}
|
| 1635 |
+
}
|
| 1636 |
+
layer {
|
| 1637 |
+
name: "Mconv1_stage4_L1"
|
| 1638 |
+
type: "Convolution"
|
| 1639 |
+
bottom: "concat_stage4"
|
| 1640 |
+
top: "Mconv1_stage4_L1"
|
| 1641 |
+
param {
|
| 1642 |
+
lr_mult: 4.0
|
| 1643 |
+
decay_mult: 1
|
| 1644 |
+
}
|
| 1645 |
+
param {
|
| 1646 |
+
lr_mult: 8.0
|
| 1647 |
+
decay_mult: 0
|
| 1648 |
+
}
|
| 1649 |
+
convolution_param {
|
| 1650 |
+
num_output: 128
|
| 1651 |
+
pad: 3
|
| 1652 |
+
kernel_size: 7
|
| 1653 |
+
weight_filler {
|
| 1654 |
+
type: "gaussian"
|
| 1655 |
+
std: 0.01
|
| 1656 |
+
}
|
| 1657 |
+
bias_filler {
|
| 1658 |
+
type: "constant"
|
| 1659 |
+
}
|
| 1660 |
+
}
|
| 1661 |
+
}
|
| 1662 |
+
layer {
|
| 1663 |
+
name: "Mrelu1_stage4_L1"
|
| 1664 |
+
type: "ReLU"
|
| 1665 |
+
bottom: "Mconv1_stage4_L1"
|
| 1666 |
+
top: "Mconv1_stage4_L1"
|
| 1667 |
+
}
|
| 1668 |
+
layer {
|
| 1669 |
+
name: "Mconv1_stage4_L2"
|
| 1670 |
+
type: "Convolution"
|
| 1671 |
+
bottom: "concat_stage4"
|
| 1672 |
+
top: "Mconv1_stage4_L2"
|
| 1673 |
+
param {
|
| 1674 |
+
lr_mult: 4.0
|
| 1675 |
+
decay_mult: 1
|
| 1676 |
+
}
|
| 1677 |
+
param {
|
| 1678 |
+
lr_mult: 8.0
|
| 1679 |
+
decay_mult: 0
|
| 1680 |
+
}
|
| 1681 |
+
convolution_param {
|
| 1682 |
+
num_output: 128
|
| 1683 |
+
pad: 3
|
| 1684 |
+
kernel_size: 7
|
| 1685 |
+
weight_filler {
|
| 1686 |
+
type: "gaussian"
|
| 1687 |
+
std: 0.01
|
| 1688 |
+
}
|
| 1689 |
+
bias_filler {
|
| 1690 |
+
type: "constant"
|
| 1691 |
+
}
|
| 1692 |
+
}
|
| 1693 |
+
}
|
| 1694 |
+
layer {
|
| 1695 |
+
name: "Mrelu1_stage4_L2"
|
| 1696 |
+
type: "ReLU"
|
| 1697 |
+
bottom: "Mconv1_stage4_L2"
|
| 1698 |
+
top: "Mconv1_stage4_L2"
|
| 1699 |
+
}
|
| 1700 |
+
layer {
|
| 1701 |
+
name: "Mconv2_stage4_L1"
|
| 1702 |
+
type: "Convolution"
|
| 1703 |
+
bottom: "Mconv1_stage4_L1"
|
| 1704 |
+
top: "Mconv2_stage4_L1"
|
| 1705 |
+
param {
|
| 1706 |
+
lr_mult: 4.0
|
| 1707 |
+
decay_mult: 1
|
| 1708 |
+
}
|
| 1709 |
+
param {
|
| 1710 |
+
lr_mult: 8.0
|
| 1711 |
+
decay_mult: 0
|
| 1712 |
+
}
|
| 1713 |
+
convolution_param {
|
| 1714 |
+
num_output: 128
|
| 1715 |
+
pad: 3
|
| 1716 |
+
kernel_size: 7
|
| 1717 |
+
weight_filler {
|
| 1718 |
+
type: "gaussian"
|
| 1719 |
+
std: 0.01
|
| 1720 |
+
}
|
| 1721 |
+
bias_filler {
|
| 1722 |
+
type: "constant"
|
| 1723 |
+
}
|
| 1724 |
+
}
|
| 1725 |
+
}
|
| 1726 |
+
layer {
|
| 1727 |
+
name: "Mrelu2_stage4_L1"
|
| 1728 |
+
type: "ReLU"
|
| 1729 |
+
bottom: "Mconv2_stage4_L1"
|
| 1730 |
+
top: "Mconv2_stage4_L1"
|
| 1731 |
+
}
|
| 1732 |
+
layer {
|
| 1733 |
+
name: "Mconv2_stage4_L2"
|
| 1734 |
+
type: "Convolution"
|
| 1735 |
+
bottom: "Mconv1_stage4_L2"
|
| 1736 |
+
top: "Mconv2_stage4_L2"
|
| 1737 |
+
param {
|
| 1738 |
+
lr_mult: 4.0
|
| 1739 |
+
decay_mult: 1
|
| 1740 |
+
}
|
| 1741 |
+
param {
|
| 1742 |
+
lr_mult: 8.0
|
| 1743 |
+
decay_mult: 0
|
| 1744 |
+
}
|
| 1745 |
+
convolution_param {
|
| 1746 |
+
num_output: 128
|
| 1747 |
+
pad: 3
|
| 1748 |
+
kernel_size: 7
|
| 1749 |
+
weight_filler {
|
| 1750 |
+
type: "gaussian"
|
| 1751 |
+
std: 0.01
|
| 1752 |
+
}
|
| 1753 |
+
bias_filler {
|
| 1754 |
+
type: "constant"
|
| 1755 |
+
}
|
| 1756 |
+
}
|
| 1757 |
+
}
|
| 1758 |
+
layer {
|
| 1759 |
+
name: "Mrelu2_stage4_L2"
|
| 1760 |
+
type: "ReLU"
|
| 1761 |
+
bottom: "Mconv2_stage4_L2"
|
| 1762 |
+
top: "Mconv2_stage4_L2"
|
| 1763 |
+
}
|
| 1764 |
+
layer {
|
| 1765 |
+
name: "Mconv3_stage4_L1"
|
| 1766 |
+
type: "Convolution"
|
| 1767 |
+
bottom: "Mconv2_stage4_L1"
|
| 1768 |
+
top: "Mconv3_stage4_L1"
|
| 1769 |
+
param {
|
| 1770 |
+
lr_mult: 4.0
|
| 1771 |
+
decay_mult: 1
|
| 1772 |
+
}
|
| 1773 |
+
param {
|
| 1774 |
+
lr_mult: 8.0
|
| 1775 |
+
decay_mult: 0
|
| 1776 |
+
}
|
| 1777 |
+
convolution_param {
|
| 1778 |
+
num_output: 128
|
| 1779 |
+
pad: 3
|
| 1780 |
+
kernel_size: 7
|
| 1781 |
+
weight_filler {
|
| 1782 |
+
type: "gaussian"
|
| 1783 |
+
std: 0.01
|
| 1784 |
+
}
|
| 1785 |
+
bias_filler {
|
| 1786 |
+
type: "constant"
|
| 1787 |
+
}
|
| 1788 |
+
}
|
| 1789 |
+
}
|
| 1790 |
+
layer {
|
| 1791 |
+
name: "Mrelu3_stage4_L1"
|
| 1792 |
+
type: "ReLU"
|
| 1793 |
+
bottom: "Mconv3_stage4_L1"
|
| 1794 |
+
top: "Mconv3_stage4_L1"
|
| 1795 |
+
}
|
| 1796 |
+
layer {
|
| 1797 |
+
name: "Mconv3_stage4_L2"
|
| 1798 |
+
type: "Convolution"
|
| 1799 |
+
bottom: "Mconv2_stage4_L2"
|
| 1800 |
+
top: "Mconv3_stage4_L2"
|
| 1801 |
+
param {
|
| 1802 |
+
lr_mult: 4.0
|
| 1803 |
+
decay_mult: 1
|
| 1804 |
+
}
|
| 1805 |
+
param {
|
| 1806 |
+
lr_mult: 8.0
|
| 1807 |
+
decay_mult: 0
|
| 1808 |
+
}
|
| 1809 |
+
convolution_param {
|
| 1810 |
+
num_output: 128
|
| 1811 |
+
pad: 3
|
| 1812 |
+
kernel_size: 7
|
| 1813 |
+
weight_filler {
|
| 1814 |
+
type: "gaussian"
|
| 1815 |
+
std: 0.01
|
| 1816 |
+
}
|
| 1817 |
+
bias_filler {
|
| 1818 |
+
type: "constant"
|
| 1819 |
+
}
|
| 1820 |
+
}
|
| 1821 |
+
}
|
| 1822 |
+
layer {
|
| 1823 |
+
name: "Mrelu3_stage4_L2"
|
| 1824 |
+
type: "ReLU"
|
| 1825 |
+
bottom: "Mconv3_stage4_L2"
|
| 1826 |
+
top: "Mconv3_stage4_L2"
|
| 1827 |
+
}
|
| 1828 |
+
layer {
|
| 1829 |
+
name: "Mconv4_stage4_L1"
|
| 1830 |
+
type: "Convolution"
|
| 1831 |
+
bottom: "Mconv3_stage4_L1"
|
| 1832 |
+
top: "Mconv4_stage4_L1"
|
| 1833 |
+
param {
|
| 1834 |
+
lr_mult: 4.0
|
| 1835 |
+
decay_mult: 1
|
| 1836 |
+
}
|
| 1837 |
+
param {
|
| 1838 |
+
lr_mult: 8.0
|
| 1839 |
+
decay_mult: 0
|
| 1840 |
+
}
|
| 1841 |
+
convolution_param {
|
| 1842 |
+
num_output: 128
|
| 1843 |
+
pad: 3
|
| 1844 |
+
kernel_size: 7
|
| 1845 |
+
weight_filler {
|
| 1846 |
+
type: "gaussian"
|
| 1847 |
+
std: 0.01
|
| 1848 |
+
}
|
| 1849 |
+
bias_filler {
|
| 1850 |
+
type: "constant"
|
| 1851 |
+
}
|
| 1852 |
+
}
|
| 1853 |
+
}
|
| 1854 |
+
layer {
|
| 1855 |
+
name: "Mrelu4_stage4_L1"
|
| 1856 |
+
type: "ReLU"
|
| 1857 |
+
bottom: "Mconv4_stage4_L1"
|
| 1858 |
+
top: "Mconv4_stage4_L1"
|
| 1859 |
+
}
|
| 1860 |
+
layer {
|
| 1861 |
+
name: "Mconv4_stage4_L2"
|
| 1862 |
+
type: "Convolution"
|
| 1863 |
+
bottom: "Mconv3_stage4_L2"
|
| 1864 |
+
top: "Mconv4_stage4_L2"
|
| 1865 |
+
param {
|
| 1866 |
+
lr_mult: 4.0
|
| 1867 |
+
decay_mult: 1
|
| 1868 |
+
}
|
| 1869 |
+
param {
|
| 1870 |
+
lr_mult: 8.0
|
| 1871 |
+
decay_mult: 0
|
| 1872 |
+
}
|
| 1873 |
+
convolution_param {
|
| 1874 |
+
num_output: 128
|
| 1875 |
+
pad: 3
|
| 1876 |
+
kernel_size: 7
|
| 1877 |
+
weight_filler {
|
| 1878 |
+
type: "gaussian"
|
| 1879 |
+
std: 0.01
|
| 1880 |
+
}
|
| 1881 |
+
bias_filler {
|
| 1882 |
+
type: "constant"
|
| 1883 |
+
}
|
| 1884 |
+
}
|
| 1885 |
+
}
|
| 1886 |
+
layer {
|
| 1887 |
+
name: "Mrelu4_stage4_L2"
|
| 1888 |
+
type: "ReLU"
|
| 1889 |
+
bottom: "Mconv4_stage4_L2"
|
| 1890 |
+
top: "Mconv4_stage4_L2"
|
| 1891 |
+
}
|
| 1892 |
+
layer {
|
| 1893 |
+
name: "Mconv5_stage4_L1"
|
| 1894 |
+
type: "Convolution"
|
| 1895 |
+
bottom: "Mconv4_stage4_L1"
|
| 1896 |
+
top: "Mconv5_stage4_L1"
|
| 1897 |
+
param {
|
| 1898 |
+
lr_mult: 4.0
|
| 1899 |
+
decay_mult: 1
|
| 1900 |
+
}
|
| 1901 |
+
param {
|
| 1902 |
+
lr_mult: 8.0
|
| 1903 |
+
decay_mult: 0
|
| 1904 |
+
}
|
| 1905 |
+
convolution_param {
|
| 1906 |
+
num_output: 128
|
| 1907 |
+
pad: 3
|
| 1908 |
+
kernel_size: 7
|
| 1909 |
+
weight_filler {
|
| 1910 |
+
type: "gaussian"
|
| 1911 |
+
std: 0.01
|
| 1912 |
+
}
|
| 1913 |
+
bias_filler {
|
| 1914 |
+
type: "constant"
|
| 1915 |
+
}
|
| 1916 |
+
}
|
| 1917 |
+
}
|
| 1918 |
+
layer {
|
| 1919 |
+
name: "Mrelu5_stage4_L1"
|
| 1920 |
+
type: "ReLU"
|
| 1921 |
+
bottom: "Mconv5_stage4_L1"
|
| 1922 |
+
top: "Mconv5_stage4_L1"
|
| 1923 |
+
}
|
| 1924 |
+
layer {
|
| 1925 |
+
name: "Mconv5_stage4_L2"
|
| 1926 |
+
type: "Convolution"
|
| 1927 |
+
bottom: "Mconv4_stage4_L2"
|
| 1928 |
+
top: "Mconv5_stage4_L2"
|
| 1929 |
+
param {
|
| 1930 |
+
lr_mult: 4.0
|
| 1931 |
+
decay_mult: 1
|
| 1932 |
+
}
|
| 1933 |
+
param {
|
| 1934 |
+
lr_mult: 8.0
|
| 1935 |
+
decay_mult: 0
|
| 1936 |
+
}
|
| 1937 |
+
convolution_param {
|
| 1938 |
+
num_output: 128
|
| 1939 |
+
pad: 3
|
| 1940 |
+
kernel_size: 7
|
| 1941 |
+
weight_filler {
|
| 1942 |
+
type: "gaussian"
|
| 1943 |
+
std: 0.01
|
| 1944 |
+
}
|
| 1945 |
+
bias_filler {
|
| 1946 |
+
type: "constant"
|
| 1947 |
+
}
|
| 1948 |
+
}
|
| 1949 |
+
}
|
| 1950 |
+
layer {
|
| 1951 |
+
name: "Mrelu5_stage4_L2"
|
| 1952 |
+
type: "ReLU"
|
| 1953 |
+
bottom: "Mconv5_stage4_L2"
|
| 1954 |
+
top: "Mconv5_stage4_L2"
|
| 1955 |
+
}
|
| 1956 |
+
layer {
|
| 1957 |
+
name: "Mconv6_stage4_L1"
|
| 1958 |
+
type: "Convolution"
|
| 1959 |
+
bottom: "Mconv5_stage4_L1"
|
| 1960 |
+
top: "Mconv6_stage4_L1"
|
| 1961 |
+
param {
|
| 1962 |
+
lr_mult: 4.0
|
| 1963 |
+
decay_mult: 1
|
| 1964 |
+
}
|
| 1965 |
+
param {
|
| 1966 |
+
lr_mult: 8.0
|
| 1967 |
+
decay_mult: 0
|
| 1968 |
+
}
|
| 1969 |
+
convolution_param {
|
| 1970 |
+
num_output: 128
|
| 1971 |
+
pad: 0
|
| 1972 |
+
kernel_size: 1
|
| 1973 |
+
weight_filler {
|
| 1974 |
+
type: "gaussian"
|
| 1975 |
+
std: 0.01
|
| 1976 |
+
}
|
| 1977 |
+
bias_filler {
|
| 1978 |
+
type: "constant"
|
| 1979 |
+
}
|
| 1980 |
+
}
|
| 1981 |
+
}
|
| 1982 |
+
layer {
|
| 1983 |
+
name: "Mrelu6_stage4_L1"
|
| 1984 |
+
type: "ReLU"
|
| 1985 |
+
bottom: "Mconv6_stage4_L1"
|
| 1986 |
+
top: "Mconv6_stage4_L1"
|
| 1987 |
+
}
|
| 1988 |
+
layer {
|
| 1989 |
+
name: "Mconv6_stage4_L2"
|
| 1990 |
+
type: "Convolution"
|
| 1991 |
+
bottom: "Mconv5_stage4_L2"
|
| 1992 |
+
top: "Mconv6_stage4_L2"
|
| 1993 |
+
param {
|
| 1994 |
+
lr_mult: 4.0
|
| 1995 |
+
decay_mult: 1
|
| 1996 |
+
}
|
| 1997 |
+
param {
|
| 1998 |
+
lr_mult: 8.0
|
| 1999 |
+
decay_mult: 0
|
| 2000 |
+
}
|
| 2001 |
+
convolution_param {
|
| 2002 |
+
num_output: 128
|
| 2003 |
+
pad: 0
|
| 2004 |
+
kernel_size: 1
|
| 2005 |
+
weight_filler {
|
| 2006 |
+
type: "gaussian"
|
| 2007 |
+
std: 0.01
|
| 2008 |
+
}
|
| 2009 |
+
bias_filler {
|
| 2010 |
+
type: "constant"
|
| 2011 |
+
}
|
| 2012 |
+
}
|
| 2013 |
+
}
|
| 2014 |
+
layer {
|
| 2015 |
+
name: "Mrelu6_stage4_L2"
|
| 2016 |
+
type: "ReLU"
|
| 2017 |
+
bottom: "Mconv6_stage4_L2"
|
| 2018 |
+
top: "Mconv6_stage4_L2"
|
| 2019 |
+
}
|
| 2020 |
+
layer {
|
| 2021 |
+
name: "Mconv7_stage4_L1"
|
| 2022 |
+
type: "Convolution"
|
| 2023 |
+
bottom: "Mconv6_stage4_L1"
|
| 2024 |
+
top: "Mconv7_stage4_L1"
|
| 2025 |
+
param {
|
| 2026 |
+
lr_mult: 4.0
|
| 2027 |
+
decay_mult: 1
|
| 2028 |
+
}
|
| 2029 |
+
param {
|
| 2030 |
+
lr_mult: 8.0
|
| 2031 |
+
decay_mult: 0
|
| 2032 |
+
}
|
| 2033 |
+
convolution_param {
|
| 2034 |
+
num_output: 38
|
| 2035 |
+
pad: 0
|
| 2036 |
+
kernel_size: 1
|
| 2037 |
+
weight_filler {
|
| 2038 |
+
type: "gaussian"
|
| 2039 |
+
std: 0.01
|
| 2040 |
+
}
|
| 2041 |
+
bias_filler {
|
| 2042 |
+
type: "constant"
|
| 2043 |
+
}
|
| 2044 |
+
}
|
| 2045 |
+
}
|
| 2046 |
+
layer {
|
| 2047 |
+
name: "Mconv7_stage4_L2"
|
| 2048 |
+
type: "Convolution"
|
| 2049 |
+
bottom: "Mconv6_stage4_L2"
|
| 2050 |
+
top: "Mconv7_stage4_L2"
|
| 2051 |
+
param {
|
| 2052 |
+
lr_mult: 4.0
|
| 2053 |
+
decay_mult: 1
|
| 2054 |
+
}
|
| 2055 |
+
param {
|
| 2056 |
+
lr_mult: 8.0
|
| 2057 |
+
decay_mult: 0
|
| 2058 |
+
}
|
| 2059 |
+
convolution_param {
|
| 2060 |
+
num_output: 19
|
| 2061 |
+
pad: 0
|
| 2062 |
+
kernel_size: 1
|
| 2063 |
+
weight_filler {
|
| 2064 |
+
type: "gaussian"
|
| 2065 |
+
std: 0.01
|
| 2066 |
+
}
|
| 2067 |
+
bias_filler {
|
| 2068 |
+
type: "constant"
|
| 2069 |
+
}
|
| 2070 |
+
}
|
| 2071 |
+
}
|
| 2072 |
+
layer {
|
| 2073 |
+
name: "concat_stage5"
|
| 2074 |
+
type: "Concat"
|
| 2075 |
+
bottom: "Mconv7_stage4_L1"
|
| 2076 |
+
bottom: "Mconv7_stage4_L2"
|
| 2077 |
+
bottom: "conv4_4_CPM"
|
| 2078 |
+
top: "concat_stage5"
|
| 2079 |
+
concat_param {
|
| 2080 |
+
axis: 1
|
| 2081 |
+
}
|
| 2082 |
+
}
|
| 2083 |
+
layer {
|
| 2084 |
+
name: "Mconv1_stage5_L1"
|
| 2085 |
+
type: "Convolution"
|
| 2086 |
+
bottom: "concat_stage5"
|
| 2087 |
+
top: "Mconv1_stage5_L1"
|
| 2088 |
+
param {
|
| 2089 |
+
lr_mult: 4.0
|
| 2090 |
+
decay_mult: 1
|
| 2091 |
+
}
|
| 2092 |
+
param {
|
| 2093 |
+
lr_mult: 8.0
|
| 2094 |
+
decay_mult: 0
|
| 2095 |
+
}
|
| 2096 |
+
convolution_param {
|
| 2097 |
+
num_output: 128
|
| 2098 |
+
pad: 3
|
| 2099 |
+
kernel_size: 7
|
| 2100 |
+
weight_filler {
|
| 2101 |
+
type: "gaussian"
|
| 2102 |
+
std: 0.01
|
| 2103 |
+
}
|
| 2104 |
+
bias_filler {
|
| 2105 |
+
type: "constant"
|
| 2106 |
+
}
|
| 2107 |
+
}
|
| 2108 |
+
}
|
| 2109 |
+
layer {
|
| 2110 |
+
name: "Mrelu1_stage5_L1"
|
| 2111 |
+
type: "ReLU"
|
| 2112 |
+
bottom: "Mconv1_stage5_L1"
|
| 2113 |
+
top: "Mconv1_stage5_L1"
|
| 2114 |
+
}
|
| 2115 |
+
layer {
|
| 2116 |
+
name: "Mconv1_stage5_L2"
|
| 2117 |
+
type: "Convolution"
|
| 2118 |
+
bottom: "concat_stage5"
|
| 2119 |
+
top: "Mconv1_stage5_L2"
|
| 2120 |
+
param {
|
| 2121 |
+
lr_mult: 4.0
|
| 2122 |
+
decay_mult: 1
|
| 2123 |
+
}
|
| 2124 |
+
param {
|
| 2125 |
+
lr_mult: 8.0
|
| 2126 |
+
decay_mult: 0
|
| 2127 |
+
}
|
| 2128 |
+
convolution_param {
|
| 2129 |
+
num_output: 128
|
| 2130 |
+
pad: 3
|
| 2131 |
+
kernel_size: 7
|
| 2132 |
+
weight_filler {
|
| 2133 |
+
type: "gaussian"
|
| 2134 |
+
std: 0.01
|
| 2135 |
+
}
|
| 2136 |
+
bias_filler {
|
| 2137 |
+
type: "constant"
|
| 2138 |
+
}
|
| 2139 |
+
}
|
| 2140 |
+
}
|
| 2141 |
+
layer {
|
| 2142 |
+
name: "Mrelu1_stage5_L2"
|
| 2143 |
+
type: "ReLU"
|
| 2144 |
+
bottom: "Mconv1_stage5_L2"
|
| 2145 |
+
top: "Mconv1_stage5_L2"
|
| 2146 |
+
}
|
| 2147 |
+
layer {
|
| 2148 |
+
name: "Mconv2_stage5_L1"
|
| 2149 |
+
type: "Convolution"
|
| 2150 |
+
bottom: "Mconv1_stage5_L1"
|
| 2151 |
+
top: "Mconv2_stage5_L1"
|
| 2152 |
+
param {
|
| 2153 |
+
lr_mult: 4.0
|
| 2154 |
+
decay_mult: 1
|
| 2155 |
+
}
|
| 2156 |
+
param {
|
| 2157 |
+
lr_mult: 8.0
|
| 2158 |
+
decay_mult: 0
|
| 2159 |
+
}
|
| 2160 |
+
convolution_param {
|
| 2161 |
+
num_output: 128
|
| 2162 |
+
pad: 3
|
| 2163 |
+
kernel_size: 7
|
| 2164 |
+
weight_filler {
|
| 2165 |
+
type: "gaussian"
|
| 2166 |
+
std: 0.01
|
| 2167 |
+
}
|
| 2168 |
+
bias_filler {
|
| 2169 |
+
type: "constant"
|
| 2170 |
+
}
|
| 2171 |
+
}
|
| 2172 |
+
}
|
| 2173 |
+
layer {
|
| 2174 |
+
name: "Mrelu2_stage5_L1"
|
| 2175 |
+
type: "ReLU"
|
| 2176 |
+
bottom: "Mconv2_stage5_L1"
|
| 2177 |
+
top: "Mconv2_stage5_L1"
|
| 2178 |
+
}
|
| 2179 |
+
layer {
|
| 2180 |
+
name: "Mconv2_stage5_L2"
|
| 2181 |
+
type: "Convolution"
|
| 2182 |
+
bottom: "Mconv1_stage5_L2"
|
| 2183 |
+
top: "Mconv2_stage5_L2"
|
| 2184 |
+
param {
|
| 2185 |
+
lr_mult: 4.0
|
| 2186 |
+
decay_mult: 1
|
| 2187 |
+
}
|
| 2188 |
+
param {
|
| 2189 |
+
lr_mult: 8.0
|
| 2190 |
+
decay_mult: 0
|
| 2191 |
+
}
|
| 2192 |
+
convolution_param {
|
| 2193 |
+
num_output: 128
|
| 2194 |
+
pad: 3
|
| 2195 |
+
kernel_size: 7
|
| 2196 |
+
weight_filler {
|
| 2197 |
+
type: "gaussian"
|
| 2198 |
+
std: 0.01
|
| 2199 |
+
}
|
| 2200 |
+
bias_filler {
|
| 2201 |
+
type: "constant"
|
| 2202 |
+
}
|
| 2203 |
+
}
|
| 2204 |
+
}
|
| 2205 |
+
layer {
|
| 2206 |
+
name: "Mrelu2_stage5_L2"
|
| 2207 |
+
type: "ReLU"
|
| 2208 |
+
bottom: "Mconv2_stage5_L2"
|
| 2209 |
+
top: "Mconv2_stage5_L2"
|
| 2210 |
+
}
|
| 2211 |
+
layer {
|
| 2212 |
+
name: "Mconv3_stage5_L1"
|
| 2213 |
+
type: "Convolution"
|
| 2214 |
+
bottom: "Mconv2_stage5_L1"
|
| 2215 |
+
top: "Mconv3_stage5_L1"
|
| 2216 |
+
param {
|
| 2217 |
+
lr_mult: 4.0
|
| 2218 |
+
decay_mult: 1
|
| 2219 |
+
}
|
| 2220 |
+
param {
|
| 2221 |
+
lr_mult: 8.0
|
| 2222 |
+
decay_mult: 0
|
| 2223 |
+
}
|
| 2224 |
+
convolution_param {
|
| 2225 |
+
num_output: 128
|
| 2226 |
+
pad: 3
|
| 2227 |
+
kernel_size: 7
|
| 2228 |
+
weight_filler {
|
| 2229 |
+
type: "gaussian"
|
| 2230 |
+
std: 0.01
|
| 2231 |
+
}
|
| 2232 |
+
bias_filler {
|
| 2233 |
+
type: "constant"
|
| 2234 |
+
}
|
| 2235 |
+
}
|
| 2236 |
+
}
|
| 2237 |
+
layer {
|
| 2238 |
+
name: "Mrelu3_stage5_L1"
|
| 2239 |
+
type: "ReLU"
|
| 2240 |
+
bottom: "Mconv3_stage5_L1"
|
| 2241 |
+
top: "Mconv3_stage5_L1"
|
| 2242 |
+
}
|
| 2243 |
+
layer {
|
| 2244 |
+
name: "Mconv3_stage5_L2"
|
| 2245 |
+
type: "Convolution"
|
| 2246 |
+
bottom: "Mconv2_stage5_L2"
|
| 2247 |
+
top: "Mconv3_stage5_L2"
|
| 2248 |
+
param {
|
| 2249 |
+
lr_mult: 4.0
|
| 2250 |
+
decay_mult: 1
|
| 2251 |
+
}
|
| 2252 |
+
param {
|
| 2253 |
+
lr_mult: 8.0
|
| 2254 |
+
decay_mult: 0
|
| 2255 |
+
}
|
| 2256 |
+
convolution_param {
|
| 2257 |
+
num_output: 128
|
| 2258 |
+
pad: 3
|
| 2259 |
+
kernel_size: 7
|
| 2260 |
+
weight_filler {
|
| 2261 |
+
type: "gaussian"
|
| 2262 |
+
std: 0.01
|
| 2263 |
+
}
|
| 2264 |
+
bias_filler {
|
| 2265 |
+
type: "constant"
|
| 2266 |
+
}
|
| 2267 |
+
}
|
| 2268 |
+
}
|
| 2269 |
+
layer {
|
| 2270 |
+
name: "Mrelu3_stage5_L2"
|
| 2271 |
+
type: "ReLU"
|
| 2272 |
+
bottom: "Mconv3_stage5_L2"
|
| 2273 |
+
top: "Mconv3_stage5_L2"
|
| 2274 |
+
}
|
| 2275 |
+
layer {
|
| 2276 |
+
name: "Mconv4_stage5_L1"
|
| 2277 |
+
type: "Convolution"
|
| 2278 |
+
bottom: "Mconv3_stage5_L1"
|
| 2279 |
+
top: "Mconv4_stage5_L1"
|
| 2280 |
+
param {
|
| 2281 |
+
lr_mult: 4.0
|
| 2282 |
+
decay_mult: 1
|
| 2283 |
+
}
|
| 2284 |
+
param {
|
| 2285 |
+
lr_mult: 8.0
|
| 2286 |
+
decay_mult: 0
|
| 2287 |
+
}
|
| 2288 |
+
convolution_param {
|
| 2289 |
+
num_output: 128
|
| 2290 |
+
pad: 3
|
| 2291 |
+
kernel_size: 7
|
| 2292 |
+
weight_filler {
|
| 2293 |
+
type: "gaussian"
|
| 2294 |
+
std: 0.01
|
| 2295 |
+
}
|
| 2296 |
+
bias_filler {
|
| 2297 |
+
type: "constant"
|
| 2298 |
+
}
|
| 2299 |
+
}
|
| 2300 |
+
}
|
| 2301 |
+
layer {
|
| 2302 |
+
name: "Mrelu4_stage5_L1"
|
| 2303 |
+
type: "ReLU"
|
| 2304 |
+
bottom: "Mconv4_stage5_L1"
|
| 2305 |
+
top: "Mconv4_stage5_L1"
|
| 2306 |
+
}
|
| 2307 |
+
layer {
|
| 2308 |
+
name: "Mconv4_stage5_L2"
|
| 2309 |
+
type: "Convolution"
|
| 2310 |
+
bottom: "Mconv3_stage5_L2"
|
| 2311 |
+
top: "Mconv4_stage5_L2"
|
| 2312 |
+
param {
|
| 2313 |
+
lr_mult: 4.0
|
| 2314 |
+
decay_mult: 1
|
| 2315 |
+
}
|
| 2316 |
+
param {
|
| 2317 |
+
lr_mult: 8.0
|
| 2318 |
+
decay_mult: 0
|
| 2319 |
+
}
|
| 2320 |
+
convolution_param {
|
| 2321 |
+
num_output: 128
|
| 2322 |
+
pad: 3
|
| 2323 |
+
kernel_size: 7
|
| 2324 |
+
weight_filler {
|
| 2325 |
+
type: "gaussian"
|
| 2326 |
+
std: 0.01
|
| 2327 |
+
}
|
| 2328 |
+
bias_filler {
|
| 2329 |
+
type: "constant"
|
| 2330 |
+
}
|
| 2331 |
+
}
|
| 2332 |
+
}
|
| 2333 |
+
layer {
|
| 2334 |
+
name: "Mrelu4_stage5_L2"
|
| 2335 |
+
type: "ReLU"
|
| 2336 |
+
bottom: "Mconv4_stage5_L2"
|
| 2337 |
+
top: "Mconv4_stage5_L2"
|
| 2338 |
+
}
|
| 2339 |
+
layer {
|
| 2340 |
+
name: "Mconv5_stage5_L1"
|
| 2341 |
+
type: "Convolution"
|
| 2342 |
+
bottom: "Mconv4_stage5_L1"
|
| 2343 |
+
top: "Mconv5_stage5_L1"
|
| 2344 |
+
param {
|
| 2345 |
+
lr_mult: 4.0
|
| 2346 |
+
decay_mult: 1
|
| 2347 |
+
}
|
| 2348 |
+
param {
|
| 2349 |
+
lr_mult: 8.0
|
| 2350 |
+
decay_mult: 0
|
| 2351 |
+
}
|
| 2352 |
+
convolution_param {
|
| 2353 |
+
num_output: 128
|
| 2354 |
+
pad: 3
|
| 2355 |
+
kernel_size: 7
|
| 2356 |
+
weight_filler {
|
| 2357 |
+
type: "gaussian"
|
| 2358 |
+
std: 0.01
|
| 2359 |
+
}
|
| 2360 |
+
bias_filler {
|
| 2361 |
+
type: "constant"
|
| 2362 |
+
}
|
| 2363 |
+
}
|
| 2364 |
+
}
|
| 2365 |
+
layer {
|
| 2366 |
+
name: "Mrelu5_stage5_L1"
|
| 2367 |
+
type: "ReLU"
|
| 2368 |
+
bottom: "Mconv5_stage5_L1"
|
| 2369 |
+
top: "Mconv5_stage5_L1"
|
| 2370 |
+
}
|
| 2371 |
+
layer {
|
| 2372 |
+
name: "Mconv5_stage5_L2"
|
| 2373 |
+
type: "Convolution"
|
| 2374 |
+
bottom: "Mconv4_stage5_L2"
|
| 2375 |
+
top: "Mconv5_stage5_L2"
|
| 2376 |
+
param {
|
| 2377 |
+
lr_mult: 4.0
|
| 2378 |
+
decay_mult: 1
|
| 2379 |
+
}
|
| 2380 |
+
param {
|
| 2381 |
+
lr_mult: 8.0
|
| 2382 |
+
decay_mult: 0
|
| 2383 |
+
}
|
| 2384 |
+
convolution_param {
|
| 2385 |
+
num_output: 128
|
| 2386 |
+
pad: 3
|
| 2387 |
+
kernel_size: 7
|
| 2388 |
+
weight_filler {
|
| 2389 |
+
type: "gaussian"
|
| 2390 |
+
std: 0.01
|
| 2391 |
+
}
|
| 2392 |
+
bias_filler {
|
| 2393 |
+
type: "constant"
|
| 2394 |
+
}
|
| 2395 |
+
}
|
| 2396 |
+
}
|
| 2397 |
+
layer {
|
| 2398 |
+
name: "Mrelu5_stage5_L2"
|
| 2399 |
+
type: "ReLU"
|
| 2400 |
+
bottom: "Mconv5_stage5_L2"
|
| 2401 |
+
top: "Mconv5_stage5_L2"
|
| 2402 |
+
}
|
| 2403 |
+
layer {
|
| 2404 |
+
name: "Mconv6_stage5_L1"
|
| 2405 |
+
type: "Convolution"
|
| 2406 |
+
bottom: "Mconv5_stage5_L1"
|
| 2407 |
+
top: "Mconv6_stage5_L1"
|
| 2408 |
+
param {
|
| 2409 |
+
lr_mult: 4.0
|
| 2410 |
+
decay_mult: 1
|
| 2411 |
+
}
|
| 2412 |
+
param {
|
| 2413 |
+
lr_mult: 8.0
|
| 2414 |
+
decay_mult: 0
|
| 2415 |
+
}
|
| 2416 |
+
convolution_param {
|
| 2417 |
+
num_output: 128
|
| 2418 |
+
pad: 0
|
| 2419 |
+
kernel_size: 1
|
| 2420 |
+
weight_filler {
|
| 2421 |
+
type: "gaussian"
|
| 2422 |
+
std: 0.01
|
| 2423 |
+
}
|
| 2424 |
+
bias_filler {
|
| 2425 |
+
type: "constant"
|
| 2426 |
+
}
|
| 2427 |
+
}
|
| 2428 |
+
}
|
| 2429 |
+
layer {
|
| 2430 |
+
name: "Mrelu6_stage5_L1"
|
| 2431 |
+
type: "ReLU"
|
| 2432 |
+
bottom: "Mconv6_stage5_L1"
|
| 2433 |
+
top: "Mconv6_stage5_L1"
|
| 2434 |
+
}
|
| 2435 |
+
layer {
|
| 2436 |
+
name: "Mconv6_stage5_L2"
|
| 2437 |
+
type: "Convolution"
|
| 2438 |
+
bottom: "Mconv5_stage5_L2"
|
| 2439 |
+
top: "Mconv6_stage5_L2"
|
| 2440 |
+
param {
|
| 2441 |
+
lr_mult: 4.0
|
| 2442 |
+
decay_mult: 1
|
| 2443 |
+
}
|
| 2444 |
+
param {
|
| 2445 |
+
lr_mult: 8.0
|
| 2446 |
+
decay_mult: 0
|
| 2447 |
+
}
|
| 2448 |
+
convolution_param {
|
| 2449 |
+
num_output: 128
|
| 2450 |
+
pad: 0
|
| 2451 |
+
kernel_size: 1
|
| 2452 |
+
weight_filler {
|
| 2453 |
+
type: "gaussian"
|
| 2454 |
+
std: 0.01
|
| 2455 |
+
}
|
| 2456 |
+
bias_filler {
|
| 2457 |
+
type: "constant"
|
| 2458 |
+
}
|
| 2459 |
+
}
|
| 2460 |
+
}
|
| 2461 |
+
layer {
|
| 2462 |
+
name: "Mrelu6_stage5_L2"
|
| 2463 |
+
type: "ReLU"
|
| 2464 |
+
bottom: "Mconv6_stage5_L2"
|
| 2465 |
+
top: "Mconv6_stage5_L2"
|
| 2466 |
+
}
|
| 2467 |
+
layer {
|
| 2468 |
+
name: "Mconv7_stage5_L1"
|
| 2469 |
+
type: "Convolution"
|
| 2470 |
+
bottom: "Mconv6_stage5_L1"
|
| 2471 |
+
top: "Mconv7_stage5_L1"
|
| 2472 |
+
param {
|
| 2473 |
+
lr_mult: 4.0
|
| 2474 |
+
decay_mult: 1
|
| 2475 |
+
}
|
| 2476 |
+
param {
|
| 2477 |
+
lr_mult: 8.0
|
| 2478 |
+
decay_mult: 0
|
| 2479 |
+
}
|
| 2480 |
+
convolution_param {
|
| 2481 |
+
num_output: 38
|
| 2482 |
+
pad: 0
|
| 2483 |
+
kernel_size: 1
|
| 2484 |
+
weight_filler {
|
| 2485 |
+
type: "gaussian"
|
| 2486 |
+
std: 0.01
|
| 2487 |
+
}
|
| 2488 |
+
bias_filler {
|
| 2489 |
+
type: "constant"
|
| 2490 |
+
}
|
| 2491 |
+
}
|
| 2492 |
+
}
|
| 2493 |
+
layer {
|
| 2494 |
+
name: "Mconv7_stage5_L2"
|
| 2495 |
+
type: "Convolution"
|
| 2496 |
+
bottom: "Mconv6_stage5_L2"
|
| 2497 |
+
top: "Mconv7_stage5_L2"
|
| 2498 |
+
param {
|
| 2499 |
+
lr_mult: 4.0
|
| 2500 |
+
decay_mult: 1
|
| 2501 |
+
}
|
| 2502 |
+
param {
|
| 2503 |
+
lr_mult: 8.0
|
| 2504 |
+
decay_mult: 0
|
| 2505 |
+
}
|
| 2506 |
+
convolution_param {
|
| 2507 |
+
num_output: 19
|
| 2508 |
+
pad: 0
|
| 2509 |
+
kernel_size: 1
|
| 2510 |
+
weight_filler {
|
| 2511 |
+
type: "gaussian"
|
| 2512 |
+
std: 0.01
|
| 2513 |
+
}
|
| 2514 |
+
bias_filler {
|
| 2515 |
+
type: "constant"
|
| 2516 |
+
}
|
| 2517 |
+
}
|
| 2518 |
+
}
|
| 2519 |
+
layer {
|
| 2520 |
+
name: "concat_stage6"
|
| 2521 |
+
type: "Concat"
|
| 2522 |
+
bottom: "Mconv7_stage5_L1"
|
| 2523 |
+
bottom: "Mconv7_stage5_L2"
|
| 2524 |
+
bottom: "conv4_4_CPM"
|
| 2525 |
+
top: "concat_stage6"
|
| 2526 |
+
concat_param {
|
| 2527 |
+
axis: 1
|
| 2528 |
+
}
|
| 2529 |
+
}
|
| 2530 |
+
layer {
|
| 2531 |
+
name: "Mconv1_stage6_L1"
|
| 2532 |
+
type: "Convolution"
|
| 2533 |
+
bottom: "concat_stage6"
|
| 2534 |
+
top: "Mconv1_stage6_L1"
|
| 2535 |
+
param {
|
| 2536 |
+
lr_mult: 4.0
|
| 2537 |
+
decay_mult: 1
|
| 2538 |
+
}
|
| 2539 |
+
param {
|
| 2540 |
+
lr_mult: 8.0
|
| 2541 |
+
decay_mult: 0
|
| 2542 |
+
}
|
| 2543 |
+
convolution_param {
|
| 2544 |
+
num_output: 128
|
| 2545 |
+
pad: 3
|
| 2546 |
+
kernel_size: 7
|
| 2547 |
+
weight_filler {
|
| 2548 |
+
type: "gaussian"
|
| 2549 |
+
std: 0.01
|
| 2550 |
+
}
|
| 2551 |
+
bias_filler {
|
| 2552 |
+
type: "constant"
|
| 2553 |
+
}
|
| 2554 |
+
}
|
| 2555 |
+
}
|
| 2556 |
+
layer {
|
| 2557 |
+
name: "Mrelu1_stage6_L1"
|
| 2558 |
+
type: "ReLU"
|
| 2559 |
+
bottom: "Mconv1_stage6_L1"
|
| 2560 |
+
top: "Mconv1_stage6_L1"
|
| 2561 |
+
}
|
| 2562 |
+
layer {
|
| 2563 |
+
name: "Mconv1_stage6_L2"
|
| 2564 |
+
type: "Convolution"
|
| 2565 |
+
bottom: "concat_stage6"
|
| 2566 |
+
top: "Mconv1_stage6_L2"
|
| 2567 |
+
param {
|
| 2568 |
+
lr_mult: 4.0
|
| 2569 |
+
decay_mult: 1
|
| 2570 |
+
}
|
| 2571 |
+
param {
|
| 2572 |
+
lr_mult: 8.0
|
| 2573 |
+
decay_mult: 0
|
| 2574 |
+
}
|
| 2575 |
+
convolution_param {
|
| 2576 |
+
num_output: 128
|
| 2577 |
+
pad: 3
|
| 2578 |
+
kernel_size: 7
|
| 2579 |
+
weight_filler {
|
| 2580 |
+
type: "gaussian"
|
| 2581 |
+
std: 0.01
|
| 2582 |
+
}
|
| 2583 |
+
bias_filler {
|
| 2584 |
+
type: "constant"
|
| 2585 |
+
}
|
| 2586 |
+
}
|
| 2587 |
+
}
|
| 2588 |
+
layer {
|
| 2589 |
+
name: "Mrelu1_stage6_L2"
|
| 2590 |
+
type: "ReLU"
|
| 2591 |
+
bottom: "Mconv1_stage6_L2"
|
| 2592 |
+
top: "Mconv1_stage6_L2"
|
| 2593 |
+
}
|
| 2594 |
+
layer {
|
| 2595 |
+
name: "Mconv2_stage6_L1"
|
| 2596 |
+
type: "Convolution"
|
| 2597 |
+
bottom: "Mconv1_stage6_L1"
|
| 2598 |
+
top: "Mconv2_stage6_L1"
|
| 2599 |
+
param {
|
| 2600 |
+
lr_mult: 4.0
|
| 2601 |
+
decay_mult: 1
|
| 2602 |
+
}
|
| 2603 |
+
param {
|
| 2604 |
+
lr_mult: 8.0
|
| 2605 |
+
decay_mult: 0
|
| 2606 |
+
}
|
| 2607 |
+
convolution_param {
|
| 2608 |
+
num_output: 128
|
| 2609 |
+
pad: 3
|
| 2610 |
+
kernel_size: 7
|
| 2611 |
+
weight_filler {
|
| 2612 |
+
type: "gaussian"
|
| 2613 |
+
std: 0.01
|
| 2614 |
+
}
|
| 2615 |
+
bias_filler {
|
| 2616 |
+
type: "constant"
|
| 2617 |
+
}
|
| 2618 |
+
}
|
| 2619 |
+
}
|
| 2620 |
+
layer {
|
| 2621 |
+
name: "Mrelu2_stage6_L1"
|
| 2622 |
+
type: "ReLU"
|
| 2623 |
+
bottom: "Mconv2_stage6_L1"
|
| 2624 |
+
top: "Mconv2_stage6_L1"
|
| 2625 |
+
}
|
| 2626 |
+
layer {
|
| 2627 |
+
name: "Mconv2_stage6_L2"
|
| 2628 |
+
type: "Convolution"
|
| 2629 |
+
bottom: "Mconv1_stage6_L2"
|
| 2630 |
+
top: "Mconv2_stage6_L2"
|
| 2631 |
+
param {
|
| 2632 |
+
lr_mult: 4.0
|
| 2633 |
+
decay_mult: 1
|
| 2634 |
+
}
|
| 2635 |
+
param {
|
| 2636 |
+
lr_mult: 8.0
|
| 2637 |
+
decay_mult: 0
|
| 2638 |
+
}
|
| 2639 |
+
convolution_param {
|
| 2640 |
+
num_output: 128
|
| 2641 |
+
pad: 3
|
| 2642 |
+
kernel_size: 7
|
| 2643 |
+
weight_filler {
|
| 2644 |
+
type: "gaussian"
|
| 2645 |
+
std: 0.01
|
| 2646 |
+
}
|
| 2647 |
+
bias_filler {
|
| 2648 |
+
type: "constant"
|
| 2649 |
+
}
|
| 2650 |
+
}
|
| 2651 |
+
}
|
| 2652 |
+
layer {
|
| 2653 |
+
name: "Mrelu2_stage6_L2"
|
| 2654 |
+
type: "ReLU"
|
| 2655 |
+
bottom: "Mconv2_stage6_L2"
|
| 2656 |
+
top: "Mconv2_stage6_L2"
|
| 2657 |
+
}
|
| 2658 |
+
layer {
|
| 2659 |
+
name: "Mconv3_stage6_L1"
|
| 2660 |
+
type: "Convolution"
|
| 2661 |
+
bottom: "Mconv2_stage6_L1"
|
| 2662 |
+
top: "Mconv3_stage6_L1"
|
| 2663 |
+
param {
|
| 2664 |
+
lr_mult: 4.0
|
| 2665 |
+
decay_mult: 1
|
| 2666 |
+
}
|
| 2667 |
+
param {
|
| 2668 |
+
lr_mult: 8.0
|
| 2669 |
+
decay_mult: 0
|
| 2670 |
+
}
|
| 2671 |
+
convolution_param {
|
| 2672 |
+
num_output: 128
|
| 2673 |
+
pad: 3
|
| 2674 |
+
kernel_size: 7
|
| 2675 |
+
weight_filler {
|
| 2676 |
+
type: "gaussian"
|
| 2677 |
+
std: 0.01
|
| 2678 |
+
}
|
| 2679 |
+
bias_filler {
|
| 2680 |
+
type: "constant"
|
| 2681 |
+
}
|
| 2682 |
+
}
|
| 2683 |
+
}
|
| 2684 |
+
layer {
|
| 2685 |
+
name: "Mrelu3_stage6_L1"
|
| 2686 |
+
type: "ReLU"
|
| 2687 |
+
bottom: "Mconv3_stage6_L1"
|
| 2688 |
+
top: "Mconv3_stage6_L1"
|
| 2689 |
+
}
|
| 2690 |
+
layer {
|
| 2691 |
+
name: "Mconv3_stage6_L2"
|
| 2692 |
+
type: "Convolution"
|
| 2693 |
+
bottom: "Mconv2_stage6_L2"
|
| 2694 |
+
top: "Mconv3_stage6_L2"
|
| 2695 |
+
param {
|
| 2696 |
+
lr_mult: 4.0
|
| 2697 |
+
decay_mult: 1
|
| 2698 |
+
}
|
| 2699 |
+
param {
|
| 2700 |
+
lr_mult: 8.0
|
| 2701 |
+
decay_mult: 0
|
| 2702 |
+
}
|
| 2703 |
+
convolution_param {
|
| 2704 |
+
num_output: 128
|
| 2705 |
+
pad: 3
|
| 2706 |
+
kernel_size: 7
|
| 2707 |
+
weight_filler {
|
| 2708 |
+
type: "gaussian"
|
| 2709 |
+
std: 0.01
|
| 2710 |
+
}
|
| 2711 |
+
bias_filler {
|
| 2712 |
+
type: "constant"
|
| 2713 |
+
}
|
| 2714 |
+
}
|
| 2715 |
+
}
|
| 2716 |
+
layer {
|
| 2717 |
+
name: "Mrelu3_stage6_L2"
|
| 2718 |
+
type: "ReLU"
|
| 2719 |
+
bottom: "Mconv3_stage6_L2"
|
| 2720 |
+
top: "Mconv3_stage6_L2"
|
| 2721 |
+
}
|
| 2722 |
+
layer {
|
| 2723 |
+
name: "Mconv4_stage6_L1"
|
| 2724 |
+
type: "Convolution"
|
| 2725 |
+
bottom: "Mconv3_stage6_L1"
|
| 2726 |
+
top: "Mconv4_stage6_L1"
|
| 2727 |
+
param {
|
| 2728 |
+
lr_mult: 4.0
|
| 2729 |
+
decay_mult: 1
|
| 2730 |
+
}
|
| 2731 |
+
param {
|
| 2732 |
+
lr_mult: 8.0
|
| 2733 |
+
decay_mult: 0
|
| 2734 |
+
}
|
| 2735 |
+
convolution_param {
|
| 2736 |
+
num_output: 128
|
| 2737 |
+
pad: 3
|
| 2738 |
+
kernel_size: 7
|
| 2739 |
+
weight_filler {
|
| 2740 |
+
type: "gaussian"
|
| 2741 |
+
std: 0.01
|
| 2742 |
+
}
|
| 2743 |
+
bias_filler {
|
| 2744 |
+
type: "constant"
|
| 2745 |
+
}
|
| 2746 |
+
}
|
| 2747 |
+
}
|
| 2748 |
+
layer {
|
| 2749 |
+
name: "Mrelu4_stage6_L1"
|
| 2750 |
+
type: "ReLU"
|
| 2751 |
+
bottom: "Mconv4_stage6_L1"
|
| 2752 |
+
top: "Mconv4_stage6_L1"
|
| 2753 |
+
}
|
| 2754 |
+
layer {
|
| 2755 |
+
name: "Mconv4_stage6_L2"
|
| 2756 |
+
type: "Convolution"
|
| 2757 |
+
bottom: "Mconv3_stage6_L2"
|
| 2758 |
+
top: "Mconv4_stage6_L2"
|
| 2759 |
+
param {
|
| 2760 |
+
lr_mult: 4.0
|
| 2761 |
+
decay_mult: 1
|
| 2762 |
+
}
|
| 2763 |
+
param {
|
| 2764 |
+
lr_mult: 8.0
|
| 2765 |
+
decay_mult: 0
|
| 2766 |
+
}
|
| 2767 |
+
convolution_param {
|
| 2768 |
+
num_output: 128
|
| 2769 |
+
pad: 3
|
| 2770 |
+
kernel_size: 7
|
| 2771 |
+
weight_filler {
|
| 2772 |
+
type: "gaussian"
|
| 2773 |
+
std: 0.01
|
| 2774 |
+
}
|
| 2775 |
+
bias_filler {
|
| 2776 |
+
type: "constant"
|
| 2777 |
+
}
|
| 2778 |
+
}
|
| 2779 |
+
}
|
| 2780 |
+
layer {
|
| 2781 |
+
name: "Mrelu4_stage6_L2"
|
| 2782 |
+
type: "ReLU"
|
| 2783 |
+
bottom: "Mconv4_stage6_L2"
|
| 2784 |
+
top: "Mconv4_stage6_L2"
|
| 2785 |
+
}
|
| 2786 |
+
layer {
|
| 2787 |
+
name: "Mconv5_stage6_L1"
|
| 2788 |
+
type: "Convolution"
|
| 2789 |
+
bottom: "Mconv4_stage6_L1"
|
| 2790 |
+
top: "Mconv5_stage6_L1"
|
| 2791 |
+
param {
|
| 2792 |
+
lr_mult: 4.0
|
| 2793 |
+
decay_mult: 1
|
| 2794 |
+
}
|
| 2795 |
+
param {
|
| 2796 |
+
lr_mult: 8.0
|
| 2797 |
+
decay_mult: 0
|
| 2798 |
+
}
|
| 2799 |
+
convolution_param {
|
| 2800 |
+
num_output: 128
|
| 2801 |
+
pad: 3
|
| 2802 |
+
kernel_size: 7
|
| 2803 |
+
weight_filler {
|
| 2804 |
+
type: "gaussian"
|
| 2805 |
+
std: 0.01
|
| 2806 |
+
}
|
| 2807 |
+
bias_filler {
|
| 2808 |
+
type: "constant"
|
| 2809 |
+
}
|
| 2810 |
+
}
|
| 2811 |
+
}
|
| 2812 |
+
layer {
|
| 2813 |
+
name: "Mrelu5_stage6_L1"
|
| 2814 |
+
type: "ReLU"
|
| 2815 |
+
bottom: "Mconv5_stage6_L1"
|
| 2816 |
+
top: "Mconv5_stage6_L1"
|
| 2817 |
+
}
|
| 2818 |
+
layer {
|
| 2819 |
+
name: "Mconv5_stage6_L2"
|
| 2820 |
+
type: "Convolution"
|
| 2821 |
+
bottom: "Mconv4_stage6_L2"
|
| 2822 |
+
top: "Mconv5_stage6_L2"
|
| 2823 |
+
param {
|
| 2824 |
+
lr_mult: 4.0
|
| 2825 |
+
decay_mult: 1
|
| 2826 |
+
}
|
| 2827 |
+
param {
|
| 2828 |
+
lr_mult: 8.0
|
| 2829 |
+
decay_mult: 0
|
| 2830 |
+
}
|
| 2831 |
+
convolution_param {
|
| 2832 |
+
num_output: 128
|
| 2833 |
+
pad: 3
|
| 2834 |
+
kernel_size: 7
|
| 2835 |
+
weight_filler {
|
| 2836 |
+
type: "gaussian"
|
| 2837 |
+
std: 0.01
|
| 2838 |
+
}
|
| 2839 |
+
bias_filler {
|
| 2840 |
+
type: "constant"
|
| 2841 |
+
}
|
| 2842 |
+
}
|
| 2843 |
+
}
|
| 2844 |
+
layer {
|
| 2845 |
+
name: "Mrelu5_stage6_L2"
|
| 2846 |
+
type: "ReLU"
|
| 2847 |
+
bottom: "Mconv5_stage6_L2"
|
| 2848 |
+
top: "Mconv5_stage6_L2"
|
| 2849 |
+
}
|
| 2850 |
+
layer {
|
| 2851 |
+
name: "Mconv6_stage6_L1"
|
| 2852 |
+
type: "Convolution"
|
| 2853 |
+
bottom: "Mconv5_stage6_L1"
|
| 2854 |
+
top: "Mconv6_stage6_L1"
|
| 2855 |
+
param {
|
| 2856 |
+
lr_mult: 4.0
|
| 2857 |
+
decay_mult: 1
|
| 2858 |
+
}
|
| 2859 |
+
param {
|
| 2860 |
+
lr_mult: 8.0
|
| 2861 |
+
decay_mult: 0
|
| 2862 |
+
}
|
| 2863 |
+
convolution_param {
|
| 2864 |
+
num_output: 128
|
| 2865 |
+
pad: 0
|
| 2866 |
+
kernel_size: 1
|
| 2867 |
+
weight_filler {
|
| 2868 |
+
type: "gaussian"
|
| 2869 |
+
std: 0.01
|
| 2870 |
+
}
|
| 2871 |
+
bias_filler {
|
| 2872 |
+
type: "constant"
|
| 2873 |
+
}
|
| 2874 |
+
}
|
| 2875 |
+
}
|
| 2876 |
+
layer {
|
| 2877 |
+
name: "Mrelu6_stage6_L1"
|
| 2878 |
+
type: "ReLU"
|
| 2879 |
+
bottom: "Mconv6_stage6_L1"
|
| 2880 |
+
top: "Mconv6_stage6_L1"
|
| 2881 |
+
}
|
| 2882 |
+
layer {
|
| 2883 |
+
name: "Mconv6_stage6_L2"
|
| 2884 |
+
type: "Convolution"
|
| 2885 |
+
bottom: "Mconv5_stage6_L2"
|
| 2886 |
+
top: "Mconv6_stage6_L2"
|
| 2887 |
+
param {
|
| 2888 |
+
lr_mult: 4.0
|
| 2889 |
+
decay_mult: 1
|
| 2890 |
+
}
|
| 2891 |
+
param {
|
| 2892 |
+
lr_mult: 8.0
|
| 2893 |
+
decay_mult: 0
|
| 2894 |
+
}
|
| 2895 |
+
convolution_param {
|
| 2896 |
+
num_output: 128
|
| 2897 |
+
pad: 0
|
| 2898 |
+
kernel_size: 1
|
| 2899 |
+
weight_filler {
|
| 2900 |
+
type: "gaussian"
|
| 2901 |
+
std: 0.01
|
| 2902 |
+
}
|
| 2903 |
+
bias_filler {
|
| 2904 |
+
type: "constant"
|
| 2905 |
+
}
|
| 2906 |
+
}
|
| 2907 |
+
}
|
| 2908 |
+
layer {
|
| 2909 |
+
name: "Mrelu6_stage6_L2"
|
| 2910 |
+
type: "ReLU"
|
| 2911 |
+
bottom: "Mconv6_stage6_L2"
|
| 2912 |
+
top: "Mconv6_stage6_L2"
|
| 2913 |
+
}
|
| 2914 |
+
layer {
|
| 2915 |
+
name: "Mconv7_stage6_L1"
|
| 2916 |
+
type: "Convolution"
|
| 2917 |
+
bottom: "Mconv6_stage6_L1"
|
| 2918 |
+
top: "Mconv7_stage6_L1"
|
| 2919 |
+
param {
|
| 2920 |
+
lr_mult: 4.0
|
| 2921 |
+
decay_mult: 1
|
| 2922 |
+
}
|
| 2923 |
+
param {
|
| 2924 |
+
lr_mult: 8.0
|
| 2925 |
+
decay_mult: 0
|
| 2926 |
+
}
|
| 2927 |
+
convolution_param {
|
| 2928 |
+
num_output: 38
|
| 2929 |
+
pad: 0
|
| 2930 |
+
kernel_size: 1
|
| 2931 |
+
weight_filler {
|
| 2932 |
+
type: "gaussian"
|
| 2933 |
+
std: 0.01
|
| 2934 |
+
}
|
| 2935 |
+
bias_filler {
|
| 2936 |
+
type: "constant"
|
| 2937 |
+
}
|
| 2938 |
+
}
|
| 2939 |
+
}
|
| 2940 |
+
layer {
|
| 2941 |
+
name: "Mconv7_stage6_L2"
|
| 2942 |
+
type: "Convolution"
|
| 2943 |
+
bottom: "Mconv6_stage6_L2"
|
| 2944 |
+
top: "Mconv7_stage6_L2"
|
| 2945 |
+
param {
|
| 2946 |
+
lr_mult: 4.0
|
| 2947 |
+
decay_mult: 1
|
| 2948 |
+
}
|
| 2949 |
+
param {
|
| 2950 |
+
lr_mult: 8.0
|
| 2951 |
+
decay_mult: 0
|
| 2952 |
+
}
|
| 2953 |
+
convolution_param {
|
| 2954 |
+
num_output: 19
|
| 2955 |
+
pad: 0
|
| 2956 |
+
kernel_size: 1
|
| 2957 |
+
weight_filler {
|
| 2958 |
+
type: "gaussian"
|
| 2959 |
+
std: 0.01
|
| 2960 |
+
}
|
| 2961 |
+
bias_filler {
|
| 2962 |
+
type: "constant"
|
| 2963 |
+
}
|
| 2964 |
+
}
|
| 2965 |
+
}
|
| 2966 |
+
layer {
|
| 2967 |
+
name: "concat_stage7"
|
| 2968 |
+
type: "Concat"
|
| 2969 |
+
bottom: "Mconv7_stage6_L2"
|
| 2970 |
+
bottom: "Mconv7_stage6_L1"
|
| 2971 |
+
# top: "concat_stage7"
|
| 2972 |
+
top: "net_output"
|
| 2973 |
+
concat_param {
|
| 2974 |
+
axis: 1
|
| 2975 |
+
}
|
| 2976 |
+
}
|
model/hand_pose_deploy.prototxt
ADDED
|
@@ -0,0 +1,1756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
input: "image"
|
| 2 |
+
input_dim: 1 # Original: 2
|
| 3 |
+
input_dim: 3 # It crashes if not left to 3
|
| 4 |
+
input_dim: 1 # Original: 368
|
| 5 |
+
input_dim: 1 # Original: 368
|
| 6 |
+
layer {
|
| 7 |
+
name: "conv1_1"
|
| 8 |
+
type: "Convolution"
|
| 9 |
+
bottom: "image"
|
| 10 |
+
top: "conv1_1"
|
| 11 |
+
param {
|
| 12 |
+
lr_mult: 1.0
|
| 13 |
+
decay_mult: 1
|
| 14 |
+
}
|
| 15 |
+
param {
|
| 16 |
+
lr_mult: 2.0
|
| 17 |
+
decay_mult: 0
|
| 18 |
+
}
|
| 19 |
+
convolution_param {
|
| 20 |
+
num_output: 64
|
| 21 |
+
pad: 1
|
| 22 |
+
kernel_size: 3
|
| 23 |
+
weight_filler {
|
| 24 |
+
type: "xavier"
|
| 25 |
+
}
|
| 26 |
+
bias_filler {
|
| 27 |
+
type: "constant"
|
| 28 |
+
}
|
| 29 |
+
dilation: 1
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
layer {
|
| 33 |
+
name: "relu1_1"
|
| 34 |
+
type: "ReLU"
|
| 35 |
+
bottom: "conv1_1"
|
| 36 |
+
top: "conv1_1"
|
| 37 |
+
}
|
| 38 |
+
layer {
|
| 39 |
+
name: "conv1_2"
|
| 40 |
+
type: "Convolution"
|
| 41 |
+
bottom: "conv1_1"
|
| 42 |
+
top: "conv1_2"
|
| 43 |
+
param {
|
| 44 |
+
lr_mult: 1.0
|
| 45 |
+
decay_mult: 1
|
| 46 |
+
}
|
| 47 |
+
param {
|
| 48 |
+
lr_mult: 2.0
|
| 49 |
+
decay_mult: 0
|
| 50 |
+
}
|
| 51 |
+
convolution_param {
|
| 52 |
+
num_output: 64
|
| 53 |
+
pad: 1
|
| 54 |
+
kernel_size: 3
|
| 55 |
+
weight_filler {
|
| 56 |
+
type: "xavier"
|
| 57 |
+
}
|
| 58 |
+
bias_filler {
|
| 59 |
+
type: "constant"
|
| 60 |
+
}
|
| 61 |
+
dilation: 1
|
| 62 |
+
}
|
| 63 |
+
}
|
| 64 |
+
layer {
|
| 65 |
+
name: "relu1_2"
|
| 66 |
+
type: "ReLU"
|
| 67 |
+
bottom: "conv1_2"
|
| 68 |
+
top: "conv1_2"
|
| 69 |
+
}
|
| 70 |
+
layer {
|
| 71 |
+
name: "pool1_stage1"
|
| 72 |
+
type: "Pooling"
|
| 73 |
+
bottom: "conv1_2"
|
| 74 |
+
top: "pool1_stage1"
|
| 75 |
+
pooling_param {
|
| 76 |
+
pool: MAX
|
| 77 |
+
kernel_size: 2
|
| 78 |
+
stride: 2
|
| 79 |
+
}
|
| 80 |
+
}
|
| 81 |
+
layer {
|
| 82 |
+
name: "conv2_1"
|
| 83 |
+
type: "Convolution"
|
| 84 |
+
bottom: "pool1_stage1"
|
| 85 |
+
top: "conv2_1"
|
| 86 |
+
param {
|
| 87 |
+
lr_mult: 1.0
|
| 88 |
+
decay_mult: 1
|
| 89 |
+
}
|
| 90 |
+
param {
|
| 91 |
+
lr_mult: 2.0
|
| 92 |
+
decay_mult: 0
|
| 93 |
+
}
|
| 94 |
+
convolution_param {
|
| 95 |
+
num_output: 128
|
| 96 |
+
pad: 1
|
| 97 |
+
kernel_size: 3
|
| 98 |
+
weight_filler {
|
| 99 |
+
type: "xavier"
|
| 100 |
+
}
|
| 101 |
+
bias_filler {
|
| 102 |
+
type: "constant"
|
| 103 |
+
}
|
| 104 |
+
dilation: 1
|
| 105 |
+
}
|
| 106 |
+
}
|
| 107 |
+
layer {
|
| 108 |
+
name: "relu2_1"
|
| 109 |
+
type: "ReLU"
|
| 110 |
+
bottom: "conv2_1"
|
| 111 |
+
top: "conv2_1"
|
| 112 |
+
}
|
| 113 |
+
layer {
|
| 114 |
+
name: "conv2_2"
|
| 115 |
+
type: "Convolution"
|
| 116 |
+
bottom: "conv2_1"
|
| 117 |
+
top: "conv2_2"
|
| 118 |
+
param {
|
| 119 |
+
lr_mult: 1.0
|
| 120 |
+
decay_mult: 1
|
| 121 |
+
}
|
| 122 |
+
param {
|
| 123 |
+
lr_mult: 2.0
|
| 124 |
+
decay_mult: 0
|
| 125 |
+
}
|
| 126 |
+
convolution_param {
|
| 127 |
+
num_output: 128
|
| 128 |
+
pad: 1
|
| 129 |
+
kernel_size: 3
|
| 130 |
+
weight_filler {
|
| 131 |
+
type: "xavier"
|
| 132 |
+
}
|
| 133 |
+
bias_filler {
|
| 134 |
+
type: "constant"
|
| 135 |
+
}
|
| 136 |
+
dilation: 1
|
| 137 |
+
}
|
| 138 |
+
}
|
| 139 |
+
layer {
|
| 140 |
+
name: "relu2_2"
|
| 141 |
+
type: "ReLU"
|
| 142 |
+
bottom: "conv2_2"
|
| 143 |
+
top: "conv2_2"
|
| 144 |
+
}
|
| 145 |
+
layer {
|
| 146 |
+
name: "pool2_stage1"
|
| 147 |
+
type: "Pooling"
|
| 148 |
+
bottom: "conv2_2"
|
| 149 |
+
top: "pool2_stage1"
|
| 150 |
+
pooling_param {
|
| 151 |
+
pool: MAX
|
| 152 |
+
kernel_size: 2
|
| 153 |
+
stride: 2
|
| 154 |
+
}
|
| 155 |
+
}
|
| 156 |
+
layer {
|
| 157 |
+
name: "conv3_1"
|
| 158 |
+
type: "Convolution"
|
| 159 |
+
bottom: "pool2_stage1"
|
| 160 |
+
top: "conv3_1"
|
| 161 |
+
param {
|
| 162 |
+
lr_mult: 1.0
|
| 163 |
+
decay_mult: 1
|
| 164 |
+
}
|
| 165 |
+
param {
|
| 166 |
+
lr_mult: 2.0
|
| 167 |
+
decay_mult: 0
|
| 168 |
+
}
|
| 169 |
+
convolution_param {
|
| 170 |
+
num_output: 256
|
| 171 |
+
pad: 1
|
| 172 |
+
kernel_size: 3
|
| 173 |
+
weight_filler {
|
| 174 |
+
type: "xavier"
|
| 175 |
+
}
|
| 176 |
+
bias_filler {
|
| 177 |
+
type: "constant"
|
| 178 |
+
}
|
| 179 |
+
dilation: 1
|
| 180 |
+
}
|
| 181 |
+
}
|
| 182 |
+
layer {
|
| 183 |
+
name: "relu3_1"
|
| 184 |
+
type: "ReLU"
|
| 185 |
+
bottom: "conv3_1"
|
| 186 |
+
top: "conv3_1"
|
| 187 |
+
}
|
| 188 |
+
layer {
|
| 189 |
+
name: "conv3_2"
|
| 190 |
+
type: "Convolution"
|
| 191 |
+
bottom: "conv3_1"
|
| 192 |
+
top: "conv3_2"
|
| 193 |
+
param {
|
| 194 |
+
lr_mult: 1.0
|
| 195 |
+
decay_mult: 1
|
| 196 |
+
}
|
| 197 |
+
param {
|
| 198 |
+
lr_mult: 2.0
|
| 199 |
+
decay_mult: 0
|
| 200 |
+
}
|
| 201 |
+
convolution_param {
|
| 202 |
+
num_output: 256
|
| 203 |
+
pad: 1
|
| 204 |
+
kernel_size: 3
|
| 205 |
+
weight_filler {
|
| 206 |
+
type: "xavier"
|
| 207 |
+
}
|
| 208 |
+
bias_filler {
|
| 209 |
+
type: "constant"
|
| 210 |
+
}
|
| 211 |
+
dilation: 1
|
| 212 |
+
}
|
| 213 |
+
}
|
| 214 |
+
layer {
|
| 215 |
+
name: "relu3_2"
|
| 216 |
+
type: "ReLU"
|
| 217 |
+
bottom: "conv3_2"
|
| 218 |
+
top: "conv3_2"
|
| 219 |
+
}
|
| 220 |
+
layer {
|
| 221 |
+
name: "conv3_3"
|
| 222 |
+
type: "Convolution"
|
| 223 |
+
bottom: "conv3_2"
|
| 224 |
+
top: "conv3_3"
|
| 225 |
+
param {
|
| 226 |
+
lr_mult: 1.0
|
| 227 |
+
decay_mult: 1
|
| 228 |
+
}
|
| 229 |
+
param {
|
| 230 |
+
lr_mult: 2.0
|
| 231 |
+
decay_mult: 0
|
| 232 |
+
}
|
| 233 |
+
convolution_param {
|
| 234 |
+
num_output: 256
|
| 235 |
+
pad: 1
|
| 236 |
+
kernel_size: 3
|
| 237 |
+
weight_filler {
|
| 238 |
+
type: "xavier"
|
| 239 |
+
}
|
| 240 |
+
bias_filler {
|
| 241 |
+
type: "constant"
|
| 242 |
+
}
|
| 243 |
+
dilation: 1
|
| 244 |
+
}
|
| 245 |
+
}
|
| 246 |
+
layer {
|
| 247 |
+
name: "relu3_3"
|
| 248 |
+
type: "ReLU"
|
| 249 |
+
bottom: "conv3_3"
|
| 250 |
+
top: "conv3_3"
|
| 251 |
+
}
|
| 252 |
+
layer {
|
| 253 |
+
name: "conv3_4"
|
| 254 |
+
type: "Convolution"
|
| 255 |
+
bottom: "conv3_3"
|
| 256 |
+
top: "conv3_4"
|
| 257 |
+
param {
|
| 258 |
+
lr_mult: 1.0
|
| 259 |
+
decay_mult: 1
|
| 260 |
+
}
|
| 261 |
+
param {
|
| 262 |
+
lr_mult: 2.0
|
| 263 |
+
decay_mult: 0
|
| 264 |
+
}
|
| 265 |
+
convolution_param {
|
| 266 |
+
num_output: 256
|
| 267 |
+
pad: 1
|
| 268 |
+
kernel_size: 3
|
| 269 |
+
weight_filler {
|
| 270 |
+
type: "xavier"
|
| 271 |
+
}
|
| 272 |
+
bias_filler {
|
| 273 |
+
type: "constant"
|
| 274 |
+
}
|
| 275 |
+
dilation: 1
|
| 276 |
+
}
|
| 277 |
+
}
|
| 278 |
+
layer {
|
| 279 |
+
name: "relu3_4"
|
| 280 |
+
type: "ReLU"
|
| 281 |
+
bottom: "conv3_4"
|
| 282 |
+
top: "conv3_4"
|
| 283 |
+
}
|
| 284 |
+
layer {
|
| 285 |
+
name: "pool3_stage1"
|
| 286 |
+
type: "Pooling"
|
| 287 |
+
bottom: "conv3_4"
|
| 288 |
+
top: "pool3_stage1"
|
| 289 |
+
pooling_param {
|
| 290 |
+
pool: MAX
|
| 291 |
+
kernel_size: 2
|
| 292 |
+
stride: 2
|
| 293 |
+
}
|
| 294 |
+
}
|
| 295 |
+
layer {
|
| 296 |
+
name: "conv4_1"
|
| 297 |
+
type: "Convolution"
|
| 298 |
+
bottom: "pool3_stage1"
|
| 299 |
+
top: "conv4_1"
|
| 300 |
+
param {
|
| 301 |
+
lr_mult: 1.0
|
| 302 |
+
decay_mult: 1
|
| 303 |
+
}
|
| 304 |
+
param {
|
| 305 |
+
lr_mult: 2.0
|
| 306 |
+
decay_mult: 0
|
| 307 |
+
}
|
| 308 |
+
convolution_param {
|
| 309 |
+
num_output: 512
|
| 310 |
+
pad: 1
|
| 311 |
+
kernel_size: 3
|
| 312 |
+
weight_filler {
|
| 313 |
+
type: "xavier"
|
| 314 |
+
}
|
| 315 |
+
bias_filler {
|
| 316 |
+
type: "constant"
|
| 317 |
+
}
|
| 318 |
+
dilation: 1
|
| 319 |
+
}
|
| 320 |
+
}
|
| 321 |
+
layer {
|
| 322 |
+
name: "relu4_1"
|
| 323 |
+
type: "ReLU"
|
| 324 |
+
bottom: "conv4_1"
|
| 325 |
+
top: "conv4_1"
|
| 326 |
+
}
|
| 327 |
+
layer {
|
| 328 |
+
name: "conv4_2"
|
| 329 |
+
type: "Convolution"
|
| 330 |
+
bottom: "conv4_1"
|
| 331 |
+
top: "conv4_2"
|
| 332 |
+
param {
|
| 333 |
+
lr_mult: 1.0
|
| 334 |
+
decay_mult: 1
|
| 335 |
+
}
|
| 336 |
+
param {
|
| 337 |
+
lr_mult: 2.0
|
| 338 |
+
decay_mult: 0
|
| 339 |
+
}
|
| 340 |
+
convolution_param {
|
| 341 |
+
num_output: 512
|
| 342 |
+
pad: 1
|
| 343 |
+
kernel_size: 3
|
| 344 |
+
weight_filler {
|
| 345 |
+
type: "xavier"
|
| 346 |
+
}
|
| 347 |
+
bias_filler {
|
| 348 |
+
type: "constant"
|
| 349 |
+
}
|
| 350 |
+
dilation: 1
|
| 351 |
+
}
|
| 352 |
+
}
|
| 353 |
+
layer {
|
| 354 |
+
name: "relu4_2"
|
| 355 |
+
type: "ReLU"
|
| 356 |
+
bottom: "conv4_2"
|
| 357 |
+
top: "conv4_2"
|
| 358 |
+
}
|
| 359 |
+
layer {
|
| 360 |
+
name: "conv4_3"
|
| 361 |
+
type: "Convolution"
|
| 362 |
+
bottom: "conv4_2"
|
| 363 |
+
top: "conv4_3"
|
| 364 |
+
param {
|
| 365 |
+
lr_mult: 1.0
|
| 366 |
+
decay_mult: 1
|
| 367 |
+
}
|
| 368 |
+
param {
|
| 369 |
+
lr_mult: 2.0
|
| 370 |
+
decay_mult: 0
|
| 371 |
+
}
|
| 372 |
+
convolution_param {
|
| 373 |
+
num_output: 512
|
| 374 |
+
pad: 1
|
| 375 |
+
kernel_size: 3
|
| 376 |
+
weight_filler {
|
| 377 |
+
type: "xavier"
|
| 378 |
+
}
|
| 379 |
+
bias_filler {
|
| 380 |
+
type: "constant"
|
| 381 |
+
}
|
| 382 |
+
dilation: 1
|
| 383 |
+
}
|
| 384 |
+
}
|
| 385 |
+
layer {
|
| 386 |
+
name: "relu4_3"
|
| 387 |
+
type: "ReLU"
|
| 388 |
+
bottom: "conv4_3"
|
| 389 |
+
top: "conv4_3"
|
| 390 |
+
}
|
| 391 |
+
layer {
|
| 392 |
+
name: "conv4_4"
|
| 393 |
+
type: "Convolution"
|
| 394 |
+
bottom: "conv4_3"
|
| 395 |
+
top: "conv4_4"
|
| 396 |
+
param {
|
| 397 |
+
lr_mult: 1.0
|
| 398 |
+
decay_mult: 1
|
| 399 |
+
}
|
| 400 |
+
param {
|
| 401 |
+
lr_mult: 2.0
|
| 402 |
+
decay_mult: 0
|
| 403 |
+
}
|
| 404 |
+
convolution_param {
|
| 405 |
+
num_output: 512
|
| 406 |
+
pad: 1
|
| 407 |
+
kernel_size: 3
|
| 408 |
+
weight_filler {
|
| 409 |
+
type: "xavier"
|
| 410 |
+
}
|
| 411 |
+
bias_filler {
|
| 412 |
+
type: "constant"
|
| 413 |
+
}
|
| 414 |
+
dilation: 1
|
| 415 |
+
}
|
| 416 |
+
}
|
| 417 |
+
layer {
|
| 418 |
+
name: "relu4_4"
|
| 419 |
+
type: "ReLU"
|
| 420 |
+
bottom: "conv4_4"
|
| 421 |
+
top: "conv4_4"
|
| 422 |
+
}
|
| 423 |
+
layer {
|
| 424 |
+
name: "conv5_1"
|
| 425 |
+
type: "Convolution"
|
| 426 |
+
bottom: "conv4_4"
|
| 427 |
+
top: "conv5_1"
|
| 428 |
+
param {
|
| 429 |
+
lr_mult: 1.0
|
| 430 |
+
decay_mult: 1
|
| 431 |
+
}
|
| 432 |
+
param {
|
| 433 |
+
lr_mult: 2.0
|
| 434 |
+
decay_mult: 0
|
| 435 |
+
}
|
| 436 |
+
convolution_param {
|
| 437 |
+
num_output: 512
|
| 438 |
+
pad: 1
|
| 439 |
+
kernel_size: 3
|
| 440 |
+
weight_filler {
|
| 441 |
+
type: "xavier"
|
| 442 |
+
}
|
| 443 |
+
bias_filler {
|
| 444 |
+
type: "constant"
|
| 445 |
+
}
|
| 446 |
+
dilation: 1
|
| 447 |
+
}
|
| 448 |
+
}
|
| 449 |
+
layer {
|
| 450 |
+
name: "relu5_1"
|
| 451 |
+
type: "ReLU"
|
| 452 |
+
bottom: "conv5_1"
|
| 453 |
+
top: "conv5_1"
|
| 454 |
+
}
|
| 455 |
+
layer {
|
| 456 |
+
name: "conv5_2"
|
| 457 |
+
type: "Convolution"
|
| 458 |
+
bottom: "conv5_1"
|
| 459 |
+
top: "conv5_2"
|
| 460 |
+
param {
|
| 461 |
+
lr_mult: 1.0
|
| 462 |
+
decay_mult: 1
|
| 463 |
+
}
|
| 464 |
+
param {
|
| 465 |
+
lr_mult: 2.0
|
| 466 |
+
decay_mult: 0
|
| 467 |
+
}
|
| 468 |
+
convolution_param {
|
| 469 |
+
num_output: 512
|
| 470 |
+
pad: 1
|
| 471 |
+
kernel_size: 3
|
| 472 |
+
weight_filler {
|
| 473 |
+
type: "xavier"
|
| 474 |
+
}
|
| 475 |
+
bias_filler {
|
| 476 |
+
type: "constant"
|
| 477 |
+
}
|
| 478 |
+
dilation: 1
|
| 479 |
+
}
|
| 480 |
+
}
|
| 481 |
+
layer {
|
| 482 |
+
name: "relu5_2"
|
| 483 |
+
type: "ReLU"
|
| 484 |
+
bottom: "conv5_2"
|
| 485 |
+
top: "conv5_2"
|
| 486 |
+
}
|
| 487 |
+
layer {
|
| 488 |
+
name: "conv5_3_CPM"
|
| 489 |
+
type: "Convolution"
|
| 490 |
+
bottom: "conv5_2"
|
| 491 |
+
top: "conv5_3_CPM"
|
| 492 |
+
param {
|
| 493 |
+
lr_mult: 1.0
|
| 494 |
+
decay_mult: 1
|
| 495 |
+
}
|
| 496 |
+
param {
|
| 497 |
+
lr_mult: 2.0
|
| 498 |
+
decay_mult: 0
|
| 499 |
+
}
|
| 500 |
+
convolution_param {
|
| 501 |
+
num_output: 128
|
| 502 |
+
pad: 1
|
| 503 |
+
kernel_size: 3
|
| 504 |
+
weight_filler {
|
| 505 |
+
type: "gaussian"
|
| 506 |
+
std: 0.01
|
| 507 |
+
}
|
| 508 |
+
bias_filler {
|
| 509 |
+
type: "constant"
|
| 510 |
+
}
|
| 511 |
+
dilation: 1
|
| 512 |
+
}
|
| 513 |
+
}
|
| 514 |
+
layer {
|
| 515 |
+
name: "relu5_4_stage1_3"
|
| 516 |
+
type: "ReLU"
|
| 517 |
+
bottom: "conv5_3_CPM"
|
| 518 |
+
top: "conv5_3_CPM"
|
| 519 |
+
}
|
| 520 |
+
layer {
|
| 521 |
+
name: "conv6_1_CPM"
|
| 522 |
+
type: "Convolution"
|
| 523 |
+
bottom: "conv5_3_CPM"
|
| 524 |
+
top: "conv6_1_CPM"
|
| 525 |
+
param {
|
| 526 |
+
lr_mult: 1.0
|
| 527 |
+
decay_mult: 1
|
| 528 |
+
}
|
| 529 |
+
param {
|
| 530 |
+
lr_mult: 2.0
|
| 531 |
+
decay_mult: 0
|
| 532 |
+
}
|
| 533 |
+
convolution_param {
|
| 534 |
+
num_output: 512
|
| 535 |
+
pad: 0
|
| 536 |
+
kernel_size: 1
|
| 537 |
+
weight_filler {
|
| 538 |
+
type: "gaussian"
|
| 539 |
+
std: 0.01
|
| 540 |
+
}
|
| 541 |
+
bias_filler {
|
| 542 |
+
type: "constant"
|
| 543 |
+
}
|
| 544 |
+
dilation: 1
|
| 545 |
+
}
|
| 546 |
+
}
|
| 547 |
+
layer {
|
| 548 |
+
name: "relu6_4_stage1_1"
|
| 549 |
+
type: "ReLU"
|
| 550 |
+
bottom: "conv6_1_CPM"
|
| 551 |
+
top: "conv6_1_CPM"
|
| 552 |
+
}
|
| 553 |
+
layer {
|
| 554 |
+
name: "conv6_2_CPM"
|
| 555 |
+
type: "Convolution"
|
| 556 |
+
bottom: "conv6_1_CPM"
|
| 557 |
+
top: "conv6_2_CPM"
|
| 558 |
+
param {
|
| 559 |
+
lr_mult: 1.0
|
| 560 |
+
decay_mult: 1
|
| 561 |
+
}
|
| 562 |
+
param {
|
| 563 |
+
lr_mult: 2.0
|
| 564 |
+
decay_mult: 0
|
| 565 |
+
}
|
| 566 |
+
convolution_param {
|
| 567 |
+
num_output: 22
|
| 568 |
+
pad: 0
|
| 569 |
+
kernel_size: 1
|
| 570 |
+
weight_filler {
|
| 571 |
+
type: "gaussian"
|
| 572 |
+
std: 0.01
|
| 573 |
+
}
|
| 574 |
+
bias_filler {
|
| 575 |
+
type: "constant"
|
| 576 |
+
}
|
| 577 |
+
dilation: 1
|
| 578 |
+
}
|
| 579 |
+
}
|
| 580 |
+
layer {
|
| 581 |
+
name: "concat_stage2"
|
| 582 |
+
type: "Concat"
|
| 583 |
+
bottom: "conv6_2_CPM"
|
| 584 |
+
bottom: "conv5_3_CPM"
|
| 585 |
+
top: "concat_stage2"
|
| 586 |
+
concat_param {
|
| 587 |
+
axis: 1
|
| 588 |
+
}
|
| 589 |
+
}
|
| 590 |
+
layer {
|
| 591 |
+
name: "Mconv1_stage2"
|
| 592 |
+
type: "Convolution"
|
| 593 |
+
bottom: "concat_stage2"
|
| 594 |
+
top: "Mconv1_stage2"
|
| 595 |
+
param {
|
| 596 |
+
lr_mult: 4.0
|
| 597 |
+
decay_mult: 1
|
| 598 |
+
}
|
| 599 |
+
param {
|
| 600 |
+
lr_mult: 8.0
|
| 601 |
+
decay_mult: 0
|
| 602 |
+
}
|
| 603 |
+
convolution_param {
|
| 604 |
+
num_output: 128
|
| 605 |
+
pad: 3
|
| 606 |
+
kernel_size: 7
|
| 607 |
+
weight_filler {
|
| 608 |
+
type: "gaussian"
|
| 609 |
+
std: 0.01
|
| 610 |
+
}
|
| 611 |
+
bias_filler {
|
| 612 |
+
type: "constant"
|
| 613 |
+
}
|
| 614 |
+
dilation: 1
|
| 615 |
+
}
|
| 616 |
+
}
|
| 617 |
+
layer {
|
| 618 |
+
name: "Mrelu1_2_stage2_1"
|
| 619 |
+
type: "ReLU"
|
| 620 |
+
bottom: "Mconv1_stage2"
|
| 621 |
+
top: "Mconv1_stage2"
|
| 622 |
+
}
|
| 623 |
+
layer {
|
| 624 |
+
name: "Mconv2_stage2"
|
| 625 |
+
type: "Convolution"
|
| 626 |
+
bottom: "Mconv1_stage2"
|
| 627 |
+
top: "Mconv2_stage2"
|
| 628 |
+
param {
|
| 629 |
+
lr_mult: 4.0
|
| 630 |
+
decay_mult: 1
|
| 631 |
+
}
|
| 632 |
+
param {
|
| 633 |
+
lr_mult: 8.0
|
| 634 |
+
decay_mult: 0
|
| 635 |
+
}
|
| 636 |
+
convolution_param {
|
| 637 |
+
num_output: 128
|
| 638 |
+
pad: 3
|
| 639 |
+
kernel_size: 7
|
| 640 |
+
weight_filler {
|
| 641 |
+
type: "gaussian"
|
| 642 |
+
std: 0.01
|
| 643 |
+
}
|
| 644 |
+
bias_filler {
|
| 645 |
+
type: "constant"
|
| 646 |
+
}
|
| 647 |
+
dilation: 1
|
| 648 |
+
}
|
| 649 |
+
}
|
| 650 |
+
layer {
|
| 651 |
+
name: "Mrelu1_3_stage2_2"
|
| 652 |
+
type: "ReLU"
|
| 653 |
+
bottom: "Mconv2_stage2"
|
| 654 |
+
top: "Mconv2_stage2"
|
| 655 |
+
}
|
| 656 |
+
layer {
|
| 657 |
+
name: "Mconv3_stage2"
|
| 658 |
+
type: "Convolution"
|
| 659 |
+
bottom: "Mconv2_stage2"
|
| 660 |
+
top: "Mconv3_stage2"
|
| 661 |
+
param {
|
| 662 |
+
lr_mult: 4.0
|
| 663 |
+
decay_mult: 1
|
| 664 |
+
}
|
| 665 |
+
param {
|
| 666 |
+
lr_mult: 8.0
|
| 667 |
+
decay_mult: 0
|
| 668 |
+
}
|
| 669 |
+
convolution_param {
|
| 670 |
+
num_output: 128
|
| 671 |
+
pad: 3
|
| 672 |
+
kernel_size: 7
|
| 673 |
+
weight_filler {
|
| 674 |
+
type: "gaussian"
|
| 675 |
+
std: 0.01
|
| 676 |
+
}
|
| 677 |
+
bias_filler {
|
| 678 |
+
type: "constant"
|
| 679 |
+
}
|
| 680 |
+
dilation: 1
|
| 681 |
+
}
|
| 682 |
+
}
|
| 683 |
+
layer {
|
| 684 |
+
name: "Mrelu1_4_stage2_3"
|
| 685 |
+
type: "ReLU"
|
| 686 |
+
bottom: "Mconv3_stage2"
|
| 687 |
+
top: "Mconv3_stage2"
|
| 688 |
+
}
|
| 689 |
+
layer {
|
| 690 |
+
name: "Mconv4_stage2"
|
| 691 |
+
type: "Convolution"
|
| 692 |
+
bottom: "Mconv3_stage2"
|
| 693 |
+
top: "Mconv4_stage2"
|
| 694 |
+
param {
|
| 695 |
+
lr_mult: 4.0
|
| 696 |
+
decay_mult: 1
|
| 697 |
+
}
|
| 698 |
+
param {
|
| 699 |
+
lr_mult: 8.0
|
| 700 |
+
decay_mult: 0
|
| 701 |
+
}
|
| 702 |
+
convolution_param {
|
| 703 |
+
num_output: 128
|
| 704 |
+
pad: 3
|
| 705 |
+
kernel_size: 7
|
| 706 |
+
weight_filler {
|
| 707 |
+
type: "gaussian"
|
| 708 |
+
std: 0.01
|
| 709 |
+
}
|
| 710 |
+
bias_filler {
|
| 711 |
+
type: "constant"
|
| 712 |
+
}
|
| 713 |
+
dilation: 1
|
| 714 |
+
}
|
| 715 |
+
}
|
| 716 |
+
layer {
|
| 717 |
+
name: "Mrelu1_5_stage2_4"
|
| 718 |
+
type: "ReLU"
|
| 719 |
+
bottom: "Mconv4_stage2"
|
| 720 |
+
top: "Mconv4_stage2"
|
| 721 |
+
}
|
| 722 |
+
layer {
|
| 723 |
+
name: "Mconv5_stage2"
|
| 724 |
+
type: "Convolution"
|
| 725 |
+
bottom: "Mconv4_stage2"
|
| 726 |
+
top: "Mconv5_stage2"
|
| 727 |
+
param {
|
| 728 |
+
lr_mult: 4.0
|
| 729 |
+
decay_mult: 1
|
| 730 |
+
}
|
| 731 |
+
param {
|
| 732 |
+
lr_mult: 8.0
|
| 733 |
+
decay_mult: 0
|
| 734 |
+
}
|
| 735 |
+
convolution_param {
|
| 736 |
+
num_output: 128
|
| 737 |
+
pad: 3
|
| 738 |
+
kernel_size: 7
|
| 739 |
+
weight_filler {
|
| 740 |
+
type: "gaussian"
|
| 741 |
+
std: 0.01
|
| 742 |
+
}
|
| 743 |
+
bias_filler {
|
| 744 |
+
type: "constant"
|
| 745 |
+
}
|
| 746 |
+
dilation: 1
|
| 747 |
+
}
|
| 748 |
+
}
|
| 749 |
+
layer {
|
| 750 |
+
name: "Mrelu1_6_stage2_5"
|
| 751 |
+
type: "ReLU"
|
| 752 |
+
bottom: "Mconv5_stage2"
|
| 753 |
+
top: "Mconv5_stage2"
|
| 754 |
+
}
|
| 755 |
+
layer {
|
| 756 |
+
name: "Mconv6_stage2"
|
| 757 |
+
type: "Convolution"
|
| 758 |
+
bottom: "Mconv5_stage2"
|
| 759 |
+
top: "Mconv6_stage2"
|
| 760 |
+
param {
|
| 761 |
+
lr_mult: 4.0
|
| 762 |
+
decay_mult: 1
|
| 763 |
+
}
|
| 764 |
+
param {
|
| 765 |
+
lr_mult: 8.0
|
| 766 |
+
decay_mult: 0
|
| 767 |
+
}
|
| 768 |
+
convolution_param {
|
| 769 |
+
num_output: 128
|
| 770 |
+
pad: 0
|
| 771 |
+
kernel_size: 1
|
| 772 |
+
weight_filler {
|
| 773 |
+
type: "gaussian"
|
| 774 |
+
std: 0.01
|
| 775 |
+
}
|
| 776 |
+
bias_filler {
|
| 777 |
+
type: "constant"
|
| 778 |
+
}
|
| 779 |
+
dilation: 1
|
| 780 |
+
}
|
| 781 |
+
}
|
| 782 |
+
layer {
|
| 783 |
+
name: "Mrelu1_7_stage2_6"
|
| 784 |
+
type: "ReLU"
|
| 785 |
+
bottom: "Mconv6_stage2"
|
| 786 |
+
top: "Mconv6_stage2"
|
| 787 |
+
}
|
| 788 |
+
layer {
|
| 789 |
+
name: "Mconv7_stage2"
|
| 790 |
+
type: "Convolution"
|
| 791 |
+
bottom: "Mconv6_stage2"
|
| 792 |
+
top: "Mconv7_stage2"
|
| 793 |
+
param {
|
| 794 |
+
lr_mult: 4.0
|
| 795 |
+
decay_mult: 1
|
| 796 |
+
}
|
| 797 |
+
param {
|
| 798 |
+
lr_mult: 8.0
|
| 799 |
+
decay_mult: 0
|
| 800 |
+
}
|
| 801 |
+
convolution_param {
|
| 802 |
+
num_output: 22
|
| 803 |
+
pad: 0
|
| 804 |
+
kernel_size: 1
|
| 805 |
+
weight_filler {
|
| 806 |
+
type: "gaussian"
|
| 807 |
+
std: 0.01
|
| 808 |
+
}
|
| 809 |
+
bias_filler {
|
| 810 |
+
type: "constant"
|
| 811 |
+
}
|
| 812 |
+
dilation: 1
|
| 813 |
+
}
|
| 814 |
+
}
|
| 815 |
+
layer {
|
| 816 |
+
name: "concat_stage3"
|
| 817 |
+
type: "Concat"
|
| 818 |
+
bottom: "Mconv7_stage2"
|
| 819 |
+
bottom: "conv5_3_CPM"
|
| 820 |
+
top: "concat_stage3"
|
| 821 |
+
concat_param {
|
| 822 |
+
axis: 1
|
| 823 |
+
}
|
| 824 |
+
}
|
| 825 |
+
layer {
|
| 826 |
+
name: "Mconv1_stage3"
|
| 827 |
+
type: "Convolution"
|
| 828 |
+
bottom: "concat_stage3"
|
| 829 |
+
top: "Mconv1_stage3"
|
| 830 |
+
param {
|
| 831 |
+
lr_mult: 4.0
|
| 832 |
+
decay_mult: 1
|
| 833 |
+
}
|
| 834 |
+
param {
|
| 835 |
+
lr_mult: 8.0
|
| 836 |
+
decay_mult: 0
|
| 837 |
+
}
|
| 838 |
+
convolution_param {
|
| 839 |
+
num_output: 128
|
| 840 |
+
pad: 3
|
| 841 |
+
kernel_size: 7
|
| 842 |
+
weight_filler {
|
| 843 |
+
type: "gaussian"
|
| 844 |
+
std: 0.01
|
| 845 |
+
}
|
| 846 |
+
bias_filler {
|
| 847 |
+
type: "constant"
|
| 848 |
+
}
|
| 849 |
+
dilation: 1
|
| 850 |
+
}
|
| 851 |
+
}
|
| 852 |
+
layer {
|
| 853 |
+
name: "Mrelu1_2_stage3_1"
|
| 854 |
+
type: "ReLU"
|
| 855 |
+
bottom: "Mconv1_stage3"
|
| 856 |
+
top: "Mconv1_stage3"
|
| 857 |
+
}
|
| 858 |
+
layer {
|
| 859 |
+
name: "Mconv2_stage3"
|
| 860 |
+
type: "Convolution"
|
| 861 |
+
bottom: "Mconv1_stage3"
|
| 862 |
+
top: "Mconv2_stage3"
|
| 863 |
+
param {
|
| 864 |
+
lr_mult: 4.0
|
| 865 |
+
decay_mult: 1
|
| 866 |
+
}
|
| 867 |
+
param {
|
| 868 |
+
lr_mult: 8.0
|
| 869 |
+
decay_mult: 0
|
| 870 |
+
}
|
| 871 |
+
convolution_param {
|
| 872 |
+
num_output: 128
|
| 873 |
+
pad: 3
|
| 874 |
+
kernel_size: 7
|
| 875 |
+
weight_filler {
|
| 876 |
+
type: "gaussian"
|
| 877 |
+
std: 0.01
|
| 878 |
+
}
|
| 879 |
+
bias_filler {
|
| 880 |
+
type: "constant"
|
| 881 |
+
}
|
| 882 |
+
dilation: 1
|
| 883 |
+
}
|
| 884 |
+
}
|
| 885 |
+
layer {
|
| 886 |
+
name: "Mrelu1_3_stage3_2"
|
| 887 |
+
type: "ReLU"
|
| 888 |
+
bottom: "Mconv2_stage3"
|
| 889 |
+
top: "Mconv2_stage3"
|
| 890 |
+
}
|
| 891 |
+
layer {
|
| 892 |
+
name: "Mconv3_stage3"
|
| 893 |
+
type: "Convolution"
|
| 894 |
+
bottom: "Mconv2_stage3"
|
| 895 |
+
top: "Mconv3_stage3"
|
| 896 |
+
param {
|
| 897 |
+
lr_mult: 4.0
|
| 898 |
+
decay_mult: 1
|
| 899 |
+
}
|
| 900 |
+
param {
|
| 901 |
+
lr_mult: 8.0
|
| 902 |
+
decay_mult: 0
|
| 903 |
+
}
|
| 904 |
+
convolution_param {
|
| 905 |
+
num_output: 128
|
| 906 |
+
pad: 3
|
| 907 |
+
kernel_size: 7
|
| 908 |
+
weight_filler {
|
| 909 |
+
type: "gaussian"
|
| 910 |
+
std: 0.01
|
| 911 |
+
}
|
| 912 |
+
bias_filler {
|
| 913 |
+
type: "constant"
|
| 914 |
+
}
|
| 915 |
+
dilation: 1
|
| 916 |
+
}
|
| 917 |
+
}
|
| 918 |
+
layer {
|
| 919 |
+
name: "Mrelu1_4_stage3_3"
|
| 920 |
+
type: "ReLU"
|
| 921 |
+
bottom: "Mconv3_stage3"
|
| 922 |
+
top: "Mconv3_stage3"
|
| 923 |
+
}
|
| 924 |
+
layer {
|
| 925 |
+
name: "Mconv4_stage3"
|
| 926 |
+
type: "Convolution"
|
| 927 |
+
bottom: "Mconv3_stage3"
|
| 928 |
+
top: "Mconv4_stage3"
|
| 929 |
+
param {
|
| 930 |
+
lr_mult: 4.0
|
| 931 |
+
decay_mult: 1
|
| 932 |
+
}
|
| 933 |
+
param {
|
| 934 |
+
lr_mult: 8.0
|
| 935 |
+
decay_mult: 0
|
| 936 |
+
}
|
| 937 |
+
convolution_param {
|
| 938 |
+
num_output: 128
|
| 939 |
+
pad: 3
|
| 940 |
+
kernel_size: 7
|
| 941 |
+
weight_filler {
|
| 942 |
+
type: "gaussian"
|
| 943 |
+
std: 0.01
|
| 944 |
+
}
|
| 945 |
+
bias_filler {
|
| 946 |
+
type: "constant"
|
| 947 |
+
}
|
| 948 |
+
dilation: 1
|
| 949 |
+
}
|
| 950 |
+
}
|
| 951 |
+
layer {
|
| 952 |
+
name: "Mrelu1_5_stage3_4"
|
| 953 |
+
type: "ReLU"
|
| 954 |
+
bottom: "Mconv4_stage3"
|
| 955 |
+
top: "Mconv4_stage3"
|
| 956 |
+
}
|
| 957 |
+
layer {
|
| 958 |
+
name: "Mconv5_stage3"
|
| 959 |
+
type: "Convolution"
|
| 960 |
+
bottom: "Mconv4_stage3"
|
| 961 |
+
top: "Mconv5_stage3"
|
| 962 |
+
param {
|
| 963 |
+
lr_mult: 4.0
|
| 964 |
+
decay_mult: 1
|
| 965 |
+
}
|
| 966 |
+
param {
|
| 967 |
+
lr_mult: 8.0
|
| 968 |
+
decay_mult: 0
|
| 969 |
+
}
|
| 970 |
+
convolution_param {
|
| 971 |
+
num_output: 128
|
| 972 |
+
pad: 3
|
| 973 |
+
kernel_size: 7
|
| 974 |
+
weight_filler {
|
| 975 |
+
type: "gaussian"
|
| 976 |
+
std: 0.01
|
| 977 |
+
}
|
| 978 |
+
bias_filler {
|
| 979 |
+
type: "constant"
|
| 980 |
+
}
|
| 981 |
+
dilation: 1
|
| 982 |
+
}
|
| 983 |
+
}
|
| 984 |
+
layer {
|
| 985 |
+
name: "Mrelu1_6_stage3_5"
|
| 986 |
+
type: "ReLU"
|
| 987 |
+
bottom: "Mconv5_stage3"
|
| 988 |
+
top: "Mconv5_stage3"
|
| 989 |
+
}
|
| 990 |
+
layer {
|
| 991 |
+
name: "Mconv6_stage3"
|
| 992 |
+
type: "Convolution"
|
| 993 |
+
bottom: "Mconv5_stage3"
|
| 994 |
+
top: "Mconv6_stage3"
|
| 995 |
+
param {
|
| 996 |
+
lr_mult: 4.0
|
| 997 |
+
decay_mult: 1
|
| 998 |
+
}
|
| 999 |
+
param {
|
| 1000 |
+
lr_mult: 8.0
|
| 1001 |
+
decay_mult: 0
|
| 1002 |
+
}
|
| 1003 |
+
convolution_param {
|
| 1004 |
+
num_output: 128
|
| 1005 |
+
pad: 0
|
| 1006 |
+
kernel_size: 1
|
| 1007 |
+
weight_filler {
|
| 1008 |
+
type: "gaussian"
|
| 1009 |
+
std: 0.01
|
| 1010 |
+
}
|
| 1011 |
+
bias_filler {
|
| 1012 |
+
type: "constant"
|
| 1013 |
+
}
|
| 1014 |
+
dilation: 1
|
| 1015 |
+
}
|
| 1016 |
+
}
|
| 1017 |
+
layer {
|
| 1018 |
+
name: "Mrelu1_7_stage3_6"
|
| 1019 |
+
type: "ReLU"
|
| 1020 |
+
bottom: "Mconv6_stage3"
|
| 1021 |
+
top: "Mconv6_stage3"
|
| 1022 |
+
}
|
| 1023 |
+
layer {
|
| 1024 |
+
name: "Mconv7_stage3"
|
| 1025 |
+
type: "Convolution"
|
| 1026 |
+
bottom: "Mconv6_stage3"
|
| 1027 |
+
top: "Mconv7_stage3"
|
| 1028 |
+
param {
|
| 1029 |
+
lr_mult: 4.0
|
| 1030 |
+
decay_mult: 1
|
| 1031 |
+
}
|
| 1032 |
+
param {
|
| 1033 |
+
lr_mult: 8.0
|
| 1034 |
+
decay_mult: 0
|
| 1035 |
+
}
|
| 1036 |
+
convolution_param {
|
| 1037 |
+
num_output: 22
|
| 1038 |
+
pad: 0
|
| 1039 |
+
kernel_size: 1
|
| 1040 |
+
weight_filler {
|
| 1041 |
+
type: "gaussian"
|
| 1042 |
+
std: 0.01
|
| 1043 |
+
}
|
| 1044 |
+
bias_filler {
|
| 1045 |
+
type: "constant"
|
| 1046 |
+
}
|
| 1047 |
+
dilation: 1
|
| 1048 |
+
}
|
| 1049 |
+
}
|
| 1050 |
+
layer {
|
| 1051 |
+
name: "concat_stage4"
|
| 1052 |
+
type: "Concat"
|
| 1053 |
+
bottom: "Mconv7_stage3"
|
| 1054 |
+
bottom: "conv5_3_CPM"
|
| 1055 |
+
top: "concat_stage4"
|
| 1056 |
+
concat_param {
|
| 1057 |
+
axis: 1
|
| 1058 |
+
}
|
| 1059 |
+
}
|
| 1060 |
+
layer {
|
| 1061 |
+
name: "Mconv1_stage4"
|
| 1062 |
+
type: "Convolution"
|
| 1063 |
+
bottom: "concat_stage4"
|
| 1064 |
+
top: "Mconv1_stage4"
|
| 1065 |
+
param {
|
| 1066 |
+
lr_mult: 4.0
|
| 1067 |
+
decay_mult: 1
|
| 1068 |
+
}
|
| 1069 |
+
param {
|
| 1070 |
+
lr_mult: 8.0
|
| 1071 |
+
decay_mult: 0
|
| 1072 |
+
}
|
| 1073 |
+
convolution_param {
|
| 1074 |
+
num_output: 128
|
| 1075 |
+
pad: 3
|
| 1076 |
+
kernel_size: 7
|
| 1077 |
+
weight_filler {
|
| 1078 |
+
type: "gaussian"
|
| 1079 |
+
std: 0.01
|
| 1080 |
+
}
|
| 1081 |
+
bias_filler {
|
| 1082 |
+
type: "constant"
|
| 1083 |
+
}
|
| 1084 |
+
dilation: 1
|
| 1085 |
+
}
|
| 1086 |
+
}
|
| 1087 |
+
layer {
|
| 1088 |
+
name: "Mrelu1_2_stage4_1"
|
| 1089 |
+
type: "ReLU"
|
| 1090 |
+
bottom: "Mconv1_stage4"
|
| 1091 |
+
top: "Mconv1_stage4"
|
| 1092 |
+
}
|
| 1093 |
+
layer {
|
| 1094 |
+
name: "Mconv2_stage4"
|
| 1095 |
+
type: "Convolution"
|
| 1096 |
+
bottom: "Mconv1_stage4"
|
| 1097 |
+
top: "Mconv2_stage4"
|
| 1098 |
+
param {
|
| 1099 |
+
lr_mult: 4.0
|
| 1100 |
+
decay_mult: 1
|
| 1101 |
+
}
|
| 1102 |
+
param {
|
| 1103 |
+
lr_mult: 8.0
|
| 1104 |
+
decay_mult: 0
|
| 1105 |
+
}
|
| 1106 |
+
convolution_param {
|
| 1107 |
+
num_output: 128
|
| 1108 |
+
pad: 3
|
| 1109 |
+
kernel_size: 7
|
| 1110 |
+
weight_filler {
|
| 1111 |
+
type: "gaussian"
|
| 1112 |
+
std: 0.01
|
| 1113 |
+
}
|
| 1114 |
+
bias_filler {
|
| 1115 |
+
type: "constant"
|
| 1116 |
+
}
|
| 1117 |
+
dilation: 1
|
| 1118 |
+
}
|
| 1119 |
+
}
|
| 1120 |
+
layer {
|
| 1121 |
+
name: "Mrelu1_3_stage4_2"
|
| 1122 |
+
type: "ReLU"
|
| 1123 |
+
bottom: "Mconv2_stage4"
|
| 1124 |
+
top: "Mconv2_stage4"
|
| 1125 |
+
}
|
| 1126 |
+
layer {
|
| 1127 |
+
name: "Mconv3_stage4"
|
| 1128 |
+
type: "Convolution"
|
| 1129 |
+
bottom: "Mconv2_stage4"
|
| 1130 |
+
top: "Mconv3_stage4"
|
| 1131 |
+
param {
|
| 1132 |
+
lr_mult: 4.0
|
| 1133 |
+
decay_mult: 1
|
| 1134 |
+
}
|
| 1135 |
+
param {
|
| 1136 |
+
lr_mult: 8.0
|
| 1137 |
+
decay_mult: 0
|
| 1138 |
+
}
|
| 1139 |
+
convolution_param {
|
| 1140 |
+
num_output: 128
|
| 1141 |
+
pad: 3
|
| 1142 |
+
kernel_size: 7
|
| 1143 |
+
weight_filler {
|
| 1144 |
+
type: "gaussian"
|
| 1145 |
+
std: 0.01
|
| 1146 |
+
}
|
| 1147 |
+
bias_filler {
|
| 1148 |
+
type: "constant"
|
| 1149 |
+
}
|
| 1150 |
+
dilation: 1
|
| 1151 |
+
}
|
| 1152 |
+
}
|
| 1153 |
+
layer {
|
| 1154 |
+
name: "Mrelu1_4_stage4_3"
|
| 1155 |
+
type: "ReLU"
|
| 1156 |
+
bottom: "Mconv3_stage4"
|
| 1157 |
+
top: "Mconv3_stage4"
|
| 1158 |
+
}
|
| 1159 |
+
layer {
|
| 1160 |
+
name: "Mconv4_stage4"
|
| 1161 |
+
type: "Convolution"
|
| 1162 |
+
bottom: "Mconv3_stage4"
|
| 1163 |
+
top: "Mconv4_stage4"
|
| 1164 |
+
param {
|
| 1165 |
+
lr_mult: 4.0
|
| 1166 |
+
decay_mult: 1
|
| 1167 |
+
}
|
| 1168 |
+
param {
|
| 1169 |
+
lr_mult: 8.0
|
| 1170 |
+
decay_mult: 0
|
| 1171 |
+
}
|
| 1172 |
+
convolution_param {
|
| 1173 |
+
num_output: 128
|
| 1174 |
+
pad: 3
|
| 1175 |
+
kernel_size: 7
|
| 1176 |
+
weight_filler {
|
| 1177 |
+
type: "gaussian"
|
| 1178 |
+
std: 0.01
|
| 1179 |
+
}
|
| 1180 |
+
bias_filler {
|
| 1181 |
+
type: "constant"
|
| 1182 |
+
}
|
| 1183 |
+
dilation: 1
|
| 1184 |
+
}
|
| 1185 |
+
}
|
| 1186 |
+
layer {
|
| 1187 |
+
name: "Mrelu1_5_stage4_4"
|
| 1188 |
+
type: "ReLU"
|
| 1189 |
+
bottom: "Mconv4_stage4"
|
| 1190 |
+
top: "Mconv4_stage4"
|
| 1191 |
+
}
|
| 1192 |
+
layer {
|
| 1193 |
+
name: "Mconv5_stage4"
|
| 1194 |
+
type: "Convolution"
|
| 1195 |
+
bottom: "Mconv4_stage4"
|
| 1196 |
+
top: "Mconv5_stage4"
|
| 1197 |
+
param {
|
| 1198 |
+
lr_mult: 4.0
|
| 1199 |
+
decay_mult: 1
|
| 1200 |
+
}
|
| 1201 |
+
param {
|
| 1202 |
+
lr_mult: 8.0
|
| 1203 |
+
decay_mult: 0
|
| 1204 |
+
}
|
| 1205 |
+
convolution_param {
|
| 1206 |
+
num_output: 128
|
| 1207 |
+
pad: 3
|
| 1208 |
+
kernel_size: 7
|
| 1209 |
+
weight_filler {
|
| 1210 |
+
type: "gaussian"
|
| 1211 |
+
std: 0.01
|
| 1212 |
+
}
|
| 1213 |
+
bias_filler {
|
| 1214 |
+
type: "constant"
|
| 1215 |
+
}
|
| 1216 |
+
dilation: 1
|
| 1217 |
+
}
|
| 1218 |
+
}
|
| 1219 |
+
layer {
|
| 1220 |
+
name: "Mrelu1_6_stage4_5"
|
| 1221 |
+
type: "ReLU"
|
| 1222 |
+
bottom: "Mconv5_stage4"
|
| 1223 |
+
top: "Mconv5_stage4"
|
| 1224 |
+
}
|
| 1225 |
+
layer {
|
| 1226 |
+
name: "Mconv6_stage4"
|
| 1227 |
+
type: "Convolution"
|
| 1228 |
+
bottom: "Mconv5_stage4"
|
| 1229 |
+
top: "Mconv6_stage4"
|
| 1230 |
+
param {
|
| 1231 |
+
lr_mult: 4.0
|
| 1232 |
+
decay_mult: 1
|
| 1233 |
+
}
|
| 1234 |
+
param {
|
| 1235 |
+
lr_mult: 8.0
|
| 1236 |
+
decay_mult: 0
|
| 1237 |
+
}
|
| 1238 |
+
convolution_param {
|
| 1239 |
+
num_output: 128
|
| 1240 |
+
pad: 0
|
| 1241 |
+
kernel_size: 1
|
| 1242 |
+
weight_filler {
|
| 1243 |
+
type: "gaussian"
|
| 1244 |
+
std: 0.01
|
| 1245 |
+
}
|
| 1246 |
+
bias_filler {
|
| 1247 |
+
type: "constant"
|
| 1248 |
+
}
|
| 1249 |
+
dilation: 1
|
| 1250 |
+
}
|
| 1251 |
+
}
|
| 1252 |
+
layer {
|
| 1253 |
+
name: "Mrelu1_7_stage4_6"
|
| 1254 |
+
type: "ReLU"
|
| 1255 |
+
bottom: "Mconv6_stage4"
|
| 1256 |
+
top: "Mconv6_stage4"
|
| 1257 |
+
}
|
| 1258 |
+
layer {
|
| 1259 |
+
name: "Mconv7_stage4"
|
| 1260 |
+
type: "Convolution"
|
| 1261 |
+
bottom: "Mconv6_stage4"
|
| 1262 |
+
top: "Mconv7_stage4"
|
| 1263 |
+
param {
|
| 1264 |
+
lr_mult: 4.0
|
| 1265 |
+
decay_mult: 1
|
| 1266 |
+
}
|
| 1267 |
+
param {
|
| 1268 |
+
lr_mult: 8.0
|
| 1269 |
+
decay_mult: 0
|
| 1270 |
+
}
|
| 1271 |
+
convolution_param {
|
| 1272 |
+
num_output: 22
|
| 1273 |
+
pad: 0
|
| 1274 |
+
kernel_size: 1
|
| 1275 |
+
weight_filler {
|
| 1276 |
+
type: "gaussian"
|
| 1277 |
+
std: 0.01
|
| 1278 |
+
}
|
| 1279 |
+
bias_filler {
|
| 1280 |
+
type: "constant"
|
| 1281 |
+
}
|
| 1282 |
+
dilation: 1
|
| 1283 |
+
}
|
| 1284 |
+
}
|
| 1285 |
+
layer {
|
| 1286 |
+
name: "concat_stage5"
|
| 1287 |
+
type: "Concat"
|
| 1288 |
+
bottom: "Mconv7_stage4"
|
| 1289 |
+
bottom: "conv5_3_CPM"
|
| 1290 |
+
top: "concat_stage5"
|
| 1291 |
+
concat_param {
|
| 1292 |
+
axis: 1
|
| 1293 |
+
}
|
| 1294 |
+
}
|
| 1295 |
+
layer {
|
| 1296 |
+
name: "Mconv1_stage5"
|
| 1297 |
+
type: "Convolution"
|
| 1298 |
+
bottom: "concat_stage5"
|
| 1299 |
+
top: "Mconv1_stage5"
|
| 1300 |
+
param {
|
| 1301 |
+
lr_mult: 4.0
|
| 1302 |
+
decay_mult: 1
|
| 1303 |
+
}
|
| 1304 |
+
param {
|
| 1305 |
+
lr_mult: 8.0
|
| 1306 |
+
decay_mult: 0
|
| 1307 |
+
}
|
| 1308 |
+
convolution_param {
|
| 1309 |
+
num_output: 128
|
| 1310 |
+
pad: 3
|
| 1311 |
+
kernel_size: 7
|
| 1312 |
+
weight_filler {
|
| 1313 |
+
type: "gaussian"
|
| 1314 |
+
std: 0.01
|
| 1315 |
+
}
|
| 1316 |
+
bias_filler {
|
| 1317 |
+
type: "constant"
|
| 1318 |
+
}
|
| 1319 |
+
dilation: 1
|
| 1320 |
+
}
|
| 1321 |
+
}
|
| 1322 |
+
layer {
|
| 1323 |
+
name: "Mrelu1_2_stage5_1"
|
| 1324 |
+
type: "ReLU"
|
| 1325 |
+
bottom: "Mconv1_stage5"
|
| 1326 |
+
top: "Mconv1_stage5"
|
| 1327 |
+
}
|
| 1328 |
+
layer {
|
| 1329 |
+
name: "Mconv2_stage5"
|
| 1330 |
+
type: "Convolution"
|
| 1331 |
+
bottom: "Mconv1_stage5"
|
| 1332 |
+
top: "Mconv2_stage5"
|
| 1333 |
+
param {
|
| 1334 |
+
lr_mult: 4.0
|
| 1335 |
+
decay_mult: 1
|
| 1336 |
+
}
|
| 1337 |
+
param {
|
| 1338 |
+
lr_mult: 8.0
|
| 1339 |
+
decay_mult: 0
|
| 1340 |
+
}
|
| 1341 |
+
convolution_param {
|
| 1342 |
+
num_output: 128
|
| 1343 |
+
pad: 3
|
| 1344 |
+
kernel_size: 7
|
| 1345 |
+
weight_filler {
|
| 1346 |
+
type: "gaussian"
|
| 1347 |
+
std: 0.01
|
| 1348 |
+
}
|
| 1349 |
+
bias_filler {
|
| 1350 |
+
type: "constant"
|
| 1351 |
+
}
|
| 1352 |
+
dilation: 1
|
| 1353 |
+
}
|
| 1354 |
+
}
|
| 1355 |
+
layer {
|
| 1356 |
+
name: "Mrelu1_3_stage5_2"
|
| 1357 |
+
type: "ReLU"
|
| 1358 |
+
bottom: "Mconv2_stage5"
|
| 1359 |
+
top: "Mconv2_stage5"
|
| 1360 |
+
}
|
| 1361 |
+
layer {
|
| 1362 |
+
name: "Mconv3_stage5"
|
| 1363 |
+
type: "Convolution"
|
| 1364 |
+
bottom: "Mconv2_stage5"
|
| 1365 |
+
top: "Mconv3_stage5"
|
| 1366 |
+
param {
|
| 1367 |
+
lr_mult: 4.0
|
| 1368 |
+
decay_mult: 1
|
| 1369 |
+
}
|
| 1370 |
+
param {
|
| 1371 |
+
lr_mult: 8.0
|
| 1372 |
+
decay_mult: 0
|
| 1373 |
+
}
|
| 1374 |
+
convolution_param {
|
| 1375 |
+
num_output: 128
|
| 1376 |
+
pad: 3
|
| 1377 |
+
kernel_size: 7
|
| 1378 |
+
weight_filler {
|
| 1379 |
+
type: "gaussian"
|
| 1380 |
+
std: 0.01
|
| 1381 |
+
}
|
| 1382 |
+
bias_filler {
|
| 1383 |
+
type: "constant"
|
| 1384 |
+
}
|
| 1385 |
+
dilation: 1
|
| 1386 |
+
}
|
| 1387 |
+
}
|
| 1388 |
+
layer {
|
| 1389 |
+
name: "Mrelu1_4_stage5_3"
|
| 1390 |
+
type: "ReLU"
|
| 1391 |
+
bottom: "Mconv3_stage5"
|
| 1392 |
+
top: "Mconv3_stage5"
|
| 1393 |
+
}
|
| 1394 |
+
layer {
|
| 1395 |
+
name: "Mconv4_stage5"
|
| 1396 |
+
type: "Convolution"
|
| 1397 |
+
bottom: "Mconv3_stage5"
|
| 1398 |
+
top: "Mconv4_stage5"
|
| 1399 |
+
param {
|
| 1400 |
+
lr_mult: 4.0
|
| 1401 |
+
decay_mult: 1
|
| 1402 |
+
}
|
| 1403 |
+
param {
|
| 1404 |
+
lr_mult: 8.0
|
| 1405 |
+
decay_mult: 0
|
| 1406 |
+
}
|
| 1407 |
+
convolution_param {
|
| 1408 |
+
num_output: 128
|
| 1409 |
+
pad: 3
|
| 1410 |
+
kernel_size: 7
|
| 1411 |
+
weight_filler {
|
| 1412 |
+
type: "gaussian"
|
| 1413 |
+
std: 0.01
|
| 1414 |
+
}
|
| 1415 |
+
bias_filler {
|
| 1416 |
+
type: "constant"
|
| 1417 |
+
}
|
| 1418 |
+
dilation: 1
|
| 1419 |
+
}
|
| 1420 |
+
}
|
| 1421 |
+
layer {
|
| 1422 |
+
name: "Mrelu1_5_stage5_4"
|
| 1423 |
+
type: "ReLU"
|
| 1424 |
+
bottom: "Mconv4_stage5"
|
| 1425 |
+
top: "Mconv4_stage5"
|
| 1426 |
+
}
|
| 1427 |
+
layer {
|
| 1428 |
+
name: "Mconv5_stage5"
|
| 1429 |
+
type: "Convolution"
|
| 1430 |
+
bottom: "Mconv4_stage5"
|
| 1431 |
+
top: "Mconv5_stage5"
|
| 1432 |
+
param {
|
| 1433 |
+
lr_mult: 4.0
|
| 1434 |
+
decay_mult: 1
|
| 1435 |
+
}
|
| 1436 |
+
param {
|
| 1437 |
+
lr_mult: 8.0
|
| 1438 |
+
decay_mult: 0
|
| 1439 |
+
}
|
| 1440 |
+
convolution_param {
|
| 1441 |
+
num_output: 128
|
| 1442 |
+
pad: 3
|
| 1443 |
+
kernel_size: 7
|
| 1444 |
+
weight_filler {
|
| 1445 |
+
type: "gaussian"
|
| 1446 |
+
std: 0.01
|
| 1447 |
+
}
|
| 1448 |
+
bias_filler {
|
| 1449 |
+
type: "constant"
|
| 1450 |
+
}
|
| 1451 |
+
dilation: 1
|
| 1452 |
+
}
|
| 1453 |
+
}
|
| 1454 |
+
layer {
|
| 1455 |
+
name: "Mrelu1_6_stage5_5"
|
| 1456 |
+
type: "ReLU"
|
| 1457 |
+
bottom: "Mconv5_stage5"
|
| 1458 |
+
top: "Mconv5_stage5"
|
| 1459 |
+
}
|
| 1460 |
+
layer {
|
| 1461 |
+
name: "Mconv6_stage5"
|
| 1462 |
+
type: "Convolution"
|
| 1463 |
+
bottom: "Mconv5_stage5"
|
| 1464 |
+
top: "Mconv6_stage5"
|
| 1465 |
+
param {
|
| 1466 |
+
lr_mult: 4.0
|
| 1467 |
+
decay_mult: 1
|
| 1468 |
+
}
|
| 1469 |
+
param {
|
| 1470 |
+
lr_mult: 8.0
|
| 1471 |
+
decay_mult: 0
|
| 1472 |
+
}
|
| 1473 |
+
convolution_param {
|
| 1474 |
+
num_output: 128
|
| 1475 |
+
pad: 0
|
| 1476 |
+
kernel_size: 1
|
| 1477 |
+
weight_filler {
|
| 1478 |
+
type: "gaussian"
|
| 1479 |
+
std: 0.01
|
| 1480 |
+
}
|
| 1481 |
+
bias_filler {
|
| 1482 |
+
type: "constant"
|
| 1483 |
+
}
|
| 1484 |
+
dilation: 1
|
| 1485 |
+
}
|
| 1486 |
+
}
|
| 1487 |
+
layer {
|
| 1488 |
+
name: "Mrelu1_7_stage5_6"
|
| 1489 |
+
type: "ReLU"
|
| 1490 |
+
bottom: "Mconv6_stage5"
|
| 1491 |
+
top: "Mconv6_stage5"
|
| 1492 |
+
}
|
| 1493 |
+
layer {
|
| 1494 |
+
name: "Mconv7_stage5"
|
| 1495 |
+
type: "Convolution"
|
| 1496 |
+
bottom: "Mconv6_stage5"
|
| 1497 |
+
top: "Mconv7_stage5"
|
| 1498 |
+
param {
|
| 1499 |
+
lr_mult: 4.0
|
| 1500 |
+
decay_mult: 1
|
| 1501 |
+
}
|
| 1502 |
+
param {
|
| 1503 |
+
lr_mult: 8.0
|
| 1504 |
+
decay_mult: 0
|
| 1505 |
+
}
|
| 1506 |
+
convolution_param {
|
| 1507 |
+
num_output: 22
|
| 1508 |
+
pad: 0
|
| 1509 |
+
kernel_size: 1
|
| 1510 |
+
weight_filler {
|
| 1511 |
+
type: "gaussian"
|
| 1512 |
+
std: 0.01
|
| 1513 |
+
}
|
| 1514 |
+
bias_filler {
|
| 1515 |
+
type: "constant"
|
| 1516 |
+
}
|
| 1517 |
+
dilation: 1
|
| 1518 |
+
}
|
| 1519 |
+
}
|
| 1520 |
+
layer {
|
| 1521 |
+
name: "concat_stage6"
|
| 1522 |
+
type: "Concat"
|
| 1523 |
+
bottom: "Mconv7_stage5"
|
| 1524 |
+
bottom: "conv5_3_CPM"
|
| 1525 |
+
top: "concat_stage6"
|
| 1526 |
+
concat_param {
|
| 1527 |
+
axis: 1
|
| 1528 |
+
}
|
| 1529 |
+
}
|
| 1530 |
+
layer {
|
| 1531 |
+
name: "Mconv1_stage6"
|
| 1532 |
+
type: "Convolution"
|
| 1533 |
+
bottom: "concat_stage6"
|
| 1534 |
+
top: "Mconv1_stage6"
|
| 1535 |
+
param {
|
| 1536 |
+
lr_mult: 4.0
|
| 1537 |
+
decay_mult: 1
|
| 1538 |
+
}
|
| 1539 |
+
param {
|
| 1540 |
+
lr_mult: 8.0
|
| 1541 |
+
decay_mult: 0
|
| 1542 |
+
}
|
| 1543 |
+
convolution_param {
|
| 1544 |
+
num_output: 128
|
| 1545 |
+
pad: 3
|
| 1546 |
+
kernel_size: 7
|
| 1547 |
+
weight_filler {
|
| 1548 |
+
type: "gaussian"
|
| 1549 |
+
std: 0.01
|
| 1550 |
+
}
|
| 1551 |
+
bias_filler {
|
| 1552 |
+
type: "constant"
|
| 1553 |
+
}
|
| 1554 |
+
dilation: 1
|
| 1555 |
+
}
|
| 1556 |
+
}
|
| 1557 |
+
layer {
|
| 1558 |
+
name: "Mrelu1_2_stage6_1"
|
| 1559 |
+
type: "ReLU"
|
| 1560 |
+
bottom: "Mconv1_stage6"
|
| 1561 |
+
top: "Mconv1_stage6"
|
| 1562 |
+
}
|
| 1563 |
+
layer {
|
| 1564 |
+
name: "Mconv2_stage6"
|
| 1565 |
+
type: "Convolution"
|
| 1566 |
+
bottom: "Mconv1_stage6"
|
| 1567 |
+
top: "Mconv2_stage6"
|
| 1568 |
+
param {
|
| 1569 |
+
lr_mult: 4.0
|
| 1570 |
+
decay_mult: 1
|
| 1571 |
+
}
|
| 1572 |
+
param {
|
| 1573 |
+
lr_mult: 8.0
|
| 1574 |
+
decay_mult: 0
|
| 1575 |
+
}
|
| 1576 |
+
convolution_param {
|
| 1577 |
+
num_output: 128
|
| 1578 |
+
pad: 3
|
| 1579 |
+
kernel_size: 7
|
| 1580 |
+
weight_filler {
|
| 1581 |
+
type: "gaussian"
|
| 1582 |
+
std: 0.01
|
| 1583 |
+
}
|
| 1584 |
+
bias_filler {
|
| 1585 |
+
type: "constant"
|
| 1586 |
+
}
|
| 1587 |
+
dilation: 1
|
| 1588 |
+
}
|
| 1589 |
+
}
|
| 1590 |
+
layer {
|
| 1591 |
+
name: "Mrelu1_3_stage6_2"
|
| 1592 |
+
type: "ReLU"
|
| 1593 |
+
bottom: "Mconv2_stage6"
|
| 1594 |
+
top: "Mconv2_stage6"
|
| 1595 |
+
}
|
| 1596 |
+
layer {
|
| 1597 |
+
name: "Mconv3_stage6"
|
| 1598 |
+
type: "Convolution"
|
| 1599 |
+
bottom: "Mconv2_stage6"
|
| 1600 |
+
top: "Mconv3_stage6"
|
| 1601 |
+
param {
|
| 1602 |
+
lr_mult: 4.0
|
| 1603 |
+
decay_mult: 1
|
| 1604 |
+
}
|
| 1605 |
+
param {
|
| 1606 |
+
lr_mult: 8.0
|
| 1607 |
+
decay_mult: 0
|
| 1608 |
+
}
|
| 1609 |
+
convolution_param {
|
| 1610 |
+
num_output: 128
|
| 1611 |
+
pad: 3
|
| 1612 |
+
kernel_size: 7
|
| 1613 |
+
weight_filler {
|
| 1614 |
+
type: "gaussian"
|
| 1615 |
+
std: 0.01
|
| 1616 |
+
}
|
| 1617 |
+
bias_filler {
|
| 1618 |
+
type: "constant"
|
| 1619 |
+
}
|
| 1620 |
+
dilation: 1
|
| 1621 |
+
}
|
| 1622 |
+
}
|
| 1623 |
+
layer {
|
| 1624 |
+
name: "Mrelu1_4_stage6_3"
|
| 1625 |
+
type: "ReLU"
|
| 1626 |
+
bottom: "Mconv3_stage6"
|
| 1627 |
+
top: "Mconv3_stage6"
|
| 1628 |
+
}
|
| 1629 |
+
layer {
|
| 1630 |
+
name: "Mconv4_stage6"
|
| 1631 |
+
type: "Convolution"
|
| 1632 |
+
bottom: "Mconv3_stage6"
|
| 1633 |
+
top: "Mconv4_stage6"
|
| 1634 |
+
param {
|
| 1635 |
+
lr_mult: 4.0
|
| 1636 |
+
decay_mult: 1
|
| 1637 |
+
}
|
| 1638 |
+
param {
|
| 1639 |
+
lr_mult: 8.0
|
| 1640 |
+
decay_mult: 0
|
| 1641 |
+
}
|
| 1642 |
+
convolution_param {
|
| 1643 |
+
num_output: 128
|
| 1644 |
+
pad: 3
|
| 1645 |
+
kernel_size: 7
|
| 1646 |
+
weight_filler {
|
| 1647 |
+
type: "gaussian"
|
| 1648 |
+
std: 0.01
|
| 1649 |
+
}
|
| 1650 |
+
bias_filler {
|
| 1651 |
+
type: "constant"
|
| 1652 |
+
}
|
| 1653 |
+
dilation: 1
|
| 1654 |
+
}
|
| 1655 |
+
}
|
| 1656 |
+
layer {
|
| 1657 |
+
name: "Mrelu1_5_stage6_4"
|
| 1658 |
+
type: "ReLU"
|
| 1659 |
+
bottom: "Mconv4_stage6"
|
| 1660 |
+
top: "Mconv4_stage6"
|
| 1661 |
+
}
|
| 1662 |
+
layer {
|
| 1663 |
+
name: "Mconv5_stage6"
|
| 1664 |
+
type: "Convolution"
|
| 1665 |
+
bottom: "Mconv4_stage6"
|
| 1666 |
+
top: "Mconv5_stage6"
|
| 1667 |
+
param {
|
| 1668 |
+
lr_mult: 4.0
|
| 1669 |
+
decay_mult: 1
|
| 1670 |
+
}
|
| 1671 |
+
param {
|
| 1672 |
+
lr_mult: 8.0
|
| 1673 |
+
decay_mult: 0
|
| 1674 |
+
}
|
| 1675 |
+
convolution_param {
|
| 1676 |
+
num_output: 128
|
| 1677 |
+
pad: 3
|
| 1678 |
+
kernel_size: 7
|
| 1679 |
+
weight_filler {
|
| 1680 |
+
type: "gaussian"
|
| 1681 |
+
std: 0.01
|
| 1682 |
+
}
|
| 1683 |
+
bias_filler {
|
| 1684 |
+
type: "constant"
|
| 1685 |
+
}
|
| 1686 |
+
dilation: 1
|
| 1687 |
+
}
|
| 1688 |
+
}
|
| 1689 |
+
layer {
|
| 1690 |
+
name: "Mrelu1_6_stage6_5"
|
| 1691 |
+
type: "ReLU"
|
| 1692 |
+
bottom: "Mconv5_stage6"
|
| 1693 |
+
top: "Mconv5_stage6"
|
| 1694 |
+
}
|
| 1695 |
+
layer {
|
| 1696 |
+
name: "Mconv6_stage6"
|
| 1697 |
+
type: "Convolution"
|
| 1698 |
+
bottom: "Mconv5_stage6"
|
| 1699 |
+
top: "Mconv6_stage6"
|
| 1700 |
+
param {
|
| 1701 |
+
lr_mult: 4.0
|
| 1702 |
+
decay_mult: 1
|
| 1703 |
+
}
|
| 1704 |
+
param {
|
| 1705 |
+
lr_mult: 8.0
|
| 1706 |
+
decay_mult: 0
|
| 1707 |
+
}
|
| 1708 |
+
convolution_param {
|
| 1709 |
+
num_output: 128
|
| 1710 |
+
pad: 0
|
| 1711 |
+
kernel_size: 1
|
| 1712 |
+
weight_filler {
|
| 1713 |
+
type: "gaussian"
|
| 1714 |
+
std: 0.01
|
| 1715 |
+
}
|
| 1716 |
+
bias_filler {
|
| 1717 |
+
type: "constant"
|
| 1718 |
+
}
|
| 1719 |
+
dilation: 1
|
| 1720 |
+
}
|
| 1721 |
+
}
|
| 1722 |
+
layer {
|
| 1723 |
+
name: "Mrelu1_7_stage6_6"
|
| 1724 |
+
type: "ReLU"
|
| 1725 |
+
bottom: "Mconv6_stage6"
|
| 1726 |
+
top: "Mconv6_stage6"
|
| 1727 |
+
}
|
| 1728 |
+
layer {
|
| 1729 |
+
name: "Mconv7_stage6"
|
| 1730 |
+
type: "Convolution"
|
| 1731 |
+
bottom: "Mconv6_stage6"
|
| 1732 |
+
# top: "Mconv7_stage6"
|
| 1733 |
+
top: "net_output"
|
| 1734 |
+
param {
|
| 1735 |
+
lr_mult: 4.0
|
| 1736 |
+
decay_mult: 1
|
| 1737 |
+
}
|
| 1738 |
+
param {
|
| 1739 |
+
lr_mult: 8.0
|
| 1740 |
+
decay_mult: 0
|
| 1741 |
+
}
|
| 1742 |
+
convolution_param {
|
| 1743 |
+
num_output: 22
|
| 1744 |
+
pad: 0
|
| 1745 |
+
kernel_size: 1
|
| 1746 |
+
weight_filler {
|
| 1747 |
+
type: "gaussian"
|
| 1748 |
+
std: 0.01
|
| 1749 |
+
}
|
| 1750 |
+
bias_filler {
|
| 1751 |
+
type: "constant"
|
| 1752 |
+
}
|
| 1753 |
+
dilation: 1
|
| 1754 |
+
}
|
| 1755 |
+
}
|
| 1756 |
+
|
out.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
matplotlib
|
| 3 |
+
opencv-python
|
| 4 |
+
scipy
|
| 5 |
+
scikit-image
|
| 6 |
+
tqdm
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-37.pyc
ADDED
|
Binary file (140 Bytes). View file
|
|
|
src/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (144 Bytes). View file
|
|
|
src/__pycache__/body.cpython-37.pyc
ADDED
|
Binary file (7.3 kB). View file
|
|
|
src/__pycache__/body.cpython-38.pyc
ADDED
|
Binary file (7.32 kB). View file
|
|
|
src/__pycache__/hand.cpython-37.pyc
ADDED
|
Binary file (3.04 kB). View file
|
|
|
src/__pycache__/hand.cpython-38.pyc
ADDED
|
Binary file (3.05 kB). View file
|
|
|
src/__pycache__/model.cpython-37.pyc
ADDED
|
Binary file (6.03 kB). View file
|
|
|
src/__pycache__/model.cpython-38.pyc
ADDED
|
Binary file (6.05 kB). View file
|
|
|
src/__pycache__/util.cpython-37.pyc
ADDED
|
Binary file (6.19 kB). View file
|
|
|
src/__pycache__/util.cpython-38.pyc
ADDED
|
Binary file (6.24 kB). View file
|
|
|
src/body.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import math
|
| 4 |
+
import time
|
| 5 |
+
from scipy.ndimage.filters import gaussian_filter
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import matplotlib
|
| 8 |
+
import torch
|
| 9 |
+
from torchvision import transforms
|
| 10 |
+
|
| 11 |
+
from src import util
|
| 12 |
+
from src.model import bodypose_model
|
| 13 |
+
|
| 14 |
+
class Body(object):
|
| 15 |
+
def __init__(self, model_path):
|
| 16 |
+
self.model = bodypose_model()
|
| 17 |
+
if torch.cuda.is_available():
|
| 18 |
+
self.model = self.model.cuda()
|
| 19 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
| 20 |
+
self.model.load_state_dict(model_dict)
|
| 21 |
+
self.model.eval()
|
| 22 |
+
|
| 23 |
+
def __call__(self, oriImg):
|
| 24 |
+
# scale_search = [0.5, 1.0, 1.5, 2.0]
|
| 25 |
+
scale_search = [0.5]
|
| 26 |
+
boxsize = 368
|
| 27 |
+
stride = 8
|
| 28 |
+
padValue = 128
|
| 29 |
+
thre1 = 0.1
|
| 30 |
+
thre2 = 0.05
|
| 31 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
| 32 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
|
| 33 |
+
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
| 34 |
+
|
| 35 |
+
for m in range(len(multiplier)):
|
| 36 |
+
scale = multiplier[m]
|
| 37 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
| 38 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
| 39 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
| 40 |
+
im = np.ascontiguousarray(im)
|
| 41 |
+
|
| 42 |
+
data = torch.from_numpy(im).float()
|
| 43 |
+
if torch.cuda.is_available():
|
| 44 |
+
data = data.cuda()
|
| 45 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
|
| 48 |
+
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
|
| 49 |
+
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
|
| 50 |
+
|
| 51 |
+
# extract outputs, resize, and remove padding
|
| 52 |
+
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
|
| 53 |
+
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
|
| 54 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
| 55 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
| 56 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
| 57 |
+
|
| 58 |
+
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
|
| 59 |
+
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
|
| 60 |
+
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
| 61 |
+
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
| 62 |
+
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
| 63 |
+
|
| 64 |
+
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
|
| 65 |
+
paf_avg += + paf / len(multiplier)
|
| 66 |
+
|
| 67 |
+
all_peaks = []
|
| 68 |
+
peak_counter = 0
|
| 69 |
+
|
| 70 |
+
for part in range(18):
|
| 71 |
+
map_ori = heatmap_avg[:, :, part]
|
| 72 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
| 73 |
+
|
| 74 |
+
map_left = np.zeros(one_heatmap.shape)
|
| 75 |
+
map_left[1:, :] = one_heatmap[:-1, :]
|
| 76 |
+
map_right = np.zeros(one_heatmap.shape)
|
| 77 |
+
map_right[:-1, :] = one_heatmap[1:, :]
|
| 78 |
+
map_up = np.zeros(one_heatmap.shape)
|
| 79 |
+
map_up[:, 1:] = one_heatmap[:, :-1]
|
| 80 |
+
map_down = np.zeros(one_heatmap.shape)
|
| 81 |
+
map_down[:, :-1] = one_heatmap[:, 1:]
|
| 82 |
+
|
| 83 |
+
peaks_binary = np.logical_and.reduce(
|
| 84 |
+
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
|
| 85 |
+
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
|
| 86 |
+
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
|
| 87 |
+
peak_id = range(peak_counter, peak_counter + len(peaks))
|
| 88 |
+
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
|
| 89 |
+
|
| 90 |
+
all_peaks.append(peaks_with_score_and_id)
|
| 91 |
+
peak_counter += len(peaks)
|
| 92 |
+
|
| 93 |
+
# find connection in the specified sequence, center 29 is in the position 15
|
| 94 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
| 95 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
| 96 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
| 97 |
+
# the middle joints heatmap correpondence
|
| 98 |
+
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
|
| 99 |
+
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
|
| 100 |
+
[55, 56], [37, 38], [45, 46]]
|
| 101 |
+
|
| 102 |
+
connection_all = []
|
| 103 |
+
special_k = []
|
| 104 |
+
mid_num = 10
|
| 105 |
+
|
| 106 |
+
for k in range(len(mapIdx)):
|
| 107 |
+
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
|
| 108 |
+
candA = all_peaks[limbSeq[k][0] - 1]
|
| 109 |
+
candB = all_peaks[limbSeq[k][1] - 1]
|
| 110 |
+
nA = len(candA)
|
| 111 |
+
nB = len(candB)
|
| 112 |
+
indexA, indexB = limbSeq[k]
|
| 113 |
+
if (nA != 0 and nB != 0):
|
| 114 |
+
connection_candidate = []
|
| 115 |
+
for i in range(nA):
|
| 116 |
+
for j in range(nB):
|
| 117 |
+
vec = np.subtract(candB[j][:2], candA[i][:2])
|
| 118 |
+
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
|
| 119 |
+
norm = max(0.001, norm)
|
| 120 |
+
vec = np.divide(vec, norm)
|
| 121 |
+
|
| 122 |
+
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
|
| 123 |
+
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
|
| 124 |
+
|
| 125 |
+
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
|
| 126 |
+
for I in range(len(startend))])
|
| 127 |
+
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
|
| 128 |
+
for I in range(len(startend))])
|
| 129 |
+
|
| 130 |
+
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
|
| 131 |
+
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
|
| 132 |
+
0.5 * oriImg.shape[0] / norm - 1, 0)
|
| 133 |
+
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
|
| 134 |
+
criterion2 = score_with_dist_prior > 0
|
| 135 |
+
if criterion1 and criterion2:
|
| 136 |
+
connection_candidate.append(
|
| 137 |
+
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
|
| 138 |
+
|
| 139 |
+
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
|
| 140 |
+
connection = np.zeros((0, 5))
|
| 141 |
+
for c in range(len(connection_candidate)):
|
| 142 |
+
i, j, s = connection_candidate[c][0:3]
|
| 143 |
+
if (i not in connection[:, 3] and j not in connection[:, 4]):
|
| 144 |
+
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
|
| 145 |
+
if (len(connection) >= min(nA, nB)):
|
| 146 |
+
break
|
| 147 |
+
|
| 148 |
+
connection_all.append(connection)
|
| 149 |
+
else:
|
| 150 |
+
special_k.append(k)
|
| 151 |
+
connection_all.append([])
|
| 152 |
+
|
| 153 |
+
# last number in each row is the total parts number of that person
|
| 154 |
+
# the second last number in each row is the score of the overall configuration
|
| 155 |
+
subset = -1 * np.ones((0, 20))
|
| 156 |
+
candidate = np.array([item for sublist in all_peaks for item in sublist])
|
| 157 |
+
|
| 158 |
+
for k in range(len(mapIdx)):
|
| 159 |
+
if k not in special_k:
|
| 160 |
+
partAs = connection_all[k][:, 0]
|
| 161 |
+
partBs = connection_all[k][:, 1]
|
| 162 |
+
indexA, indexB = np.array(limbSeq[k]) - 1
|
| 163 |
+
|
| 164 |
+
for i in range(len(connection_all[k])): # = 1:size(temp,1)
|
| 165 |
+
found = 0
|
| 166 |
+
subset_idx = [-1, -1]
|
| 167 |
+
for j in range(len(subset)): # 1:size(subset,1):
|
| 168 |
+
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
|
| 169 |
+
subset_idx[found] = j
|
| 170 |
+
found += 1
|
| 171 |
+
|
| 172 |
+
if found == 1:
|
| 173 |
+
j = subset_idx[0]
|
| 174 |
+
if subset[j][indexB] != partBs[i]:
|
| 175 |
+
subset[j][indexB] = partBs[i]
|
| 176 |
+
subset[j][-1] += 1
|
| 177 |
+
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
| 178 |
+
elif found == 2: # if found 2 and disjoint, merge them
|
| 179 |
+
j1, j2 = subset_idx
|
| 180 |
+
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
|
| 181 |
+
if len(np.nonzero(membership == 2)[0]) == 0: # merge
|
| 182 |
+
subset[j1][:-2] += (subset[j2][:-2] + 1)
|
| 183 |
+
subset[j1][-2:] += subset[j2][-2:]
|
| 184 |
+
subset[j1][-2] += connection_all[k][i][2]
|
| 185 |
+
subset = np.delete(subset, j2, 0)
|
| 186 |
+
else: # as like found == 1
|
| 187 |
+
subset[j1][indexB] = partBs[i]
|
| 188 |
+
subset[j1][-1] += 1
|
| 189 |
+
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
| 190 |
+
|
| 191 |
+
# if find no partA in the subset, create a new subset
|
| 192 |
+
elif not found and k < 17:
|
| 193 |
+
row = -1 * np.ones(20)
|
| 194 |
+
row[indexA] = partAs[i]
|
| 195 |
+
row[indexB] = partBs[i]
|
| 196 |
+
row[-1] = 2
|
| 197 |
+
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
|
| 198 |
+
subset = np.vstack([subset, row])
|
| 199 |
+
# delete some rows of subset which has few parts occur
|
| 200 |
+
deleteIdx = []
|
| 201 |
+
for i in range(len(subset)):
|
| 202 |
+
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
|
| 203 |
+
deleteIdx.append(i)
|
| 204 |
+
subset = np.delete(subset, deleteIdx, axis=0)
|
| 205 |
+
|
| 206 |
+
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
|
| 207 |
+
# candidate: x, y, score, id
|
| 208 |
+
return candidate, subset
|
| 209 |
+
|
| 210 |
+
if __name__ == "__main__":
|
| 211 |
+
body_estimation = Body('../model/body_pose_model.pth')
|
| 212 |
+
|
| 213 |
+
test_image = '../images/ski.jpg'
|
| 214 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
| 215 |
+
candidate, subset = body_estimation(oriImg)
|
| 216 |
+
canvas = util.draw_bodypose(oriImg, candidate, subset)
|
| 217 |
+
plt.imshow(canvas[:, :, [2, 1, 0]])
|
| 218 |
+
plt.show()
|
src/hand.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import json
|
| 3 |
+
import numpy as np
|
| 4 |
+
import math
|
| 5 |
+
import time
|
| 6 |
+
from scipy.ndimage.filters import gaussian_filter
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import matplotlib
|
| 9 |
+
import torch
|
| 10 |
+
from skimage.measure import label
|
| 11 |
+
|
| 12 |
+
from src.model import handpose_model
|
| 13 |
+
from src import util
|
| 14 |
+
|
| 15 |
+
class Hand(object):
|
| 16 |
+
def __init__(self, model_path):
|
| 17 |
+
self.model = handpose_model()
|
| 18 |
+
if torch.cuda.is_available():
|
| 19 |
+
self.model = self.model.cuda()
|
| 20 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
| 21 |
+
self.model.load_state_dict(model_dict)
|
| 22 |
+
self.model.eval()
|
| 23 |
+
|
| 24 |
+
def __call__(self, oriImg):
|
| 25 |
+
scale_search = [0.5, 1.0, 1.5, 2.0]
|
| 26 |
+
# scale_search = [0.5]
|
| 27 |
+
boxsize = 368
|
| 28 |
+
stride = 8
|
| 29 |
+
padValue = 128
|
| 30 |
+
thre = 0.05
|
| 31 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
| 32 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
|
| 33 |
+
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
| 34 |
+
|
| 35 |
+
for m in range(len(multiplier)):
|
| 36 |
+
scale = multiplier[m]
|
| 37 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
| 38 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
| 39 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
| 40 |
+
im = np.ascontiguousarray(im)
|
| 41 |
+
|
| 42 |
+
data = torch.from_numpy(im).float()
|
| 43 |
+
if torch.cuda.is_available():
|
| 44 |
+
data = data.cuda()
|
| 45 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
output = self.model(data).cpu().numpy()
|
| 48 |
+
# output = self.model(data).numpy()q
|
| 49 |
+
|
| 50 |
+
# extract outputs, resize, and remove padding
|
| 51 |
+
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
|
| 52 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
| 53 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
| 54 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
| 55 |
+
|
| 56 |
+
heatmap_avg += heatmap / len(multiplier)
|
| 57 |
+
|
| 58 |
+
all_peaks = []
|
| 59 |
+
for part in range(21):
|
| 60 |
+
map_ori = heatmap_avg[:, :, part]
|
| 61 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
| 62 |
+
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
|
| 63 |
+
# 全部小于阈值
|
| 64 |
+
if np.sum(binary) == 0:
|
| 65 |
+
all_peaks.append([0, 0])
|
| 66 |
+
continue
|
| 67 |
+
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
|
| 68 |
+
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
|
| 69 |
+
label_img[label_img != max_index] = 0
|
| 70 |
+
map_ori[label_img == 0] = 0
|
| 71 |
+
|
| 72 |
+
y, x = util.npmax(map_ori)
|
| 73 |
+
all_peaks.append([x, y])
|
| 74 |
+
return np.array(all_peaks)
|
| 75 |
+
|
| 76 |
+
if __name__ == "__main__":
|
| 77 |
+
hand_estimation = Hand('../model/hand_pose_model.pth')
|
| 78 |
+
|
| 79 |
+
# test_image = '../images/hand.jpg'
|
| 80 |
+
test_image = '../images/hand.jpg'
|
| 81 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
| 82 |
+
peaks = hand_estimation(oriImg)
|
| 83 |
+
canvas = util.draw_handpose(oriImg, peaks, True)
|
| 84 |
+
cv2.imshow('', canvas)
|
| 85 |
+
cv2.waitKey(0)
|
src/hand_model_output_size.json
ADDED
|
@@ -0,0 +1,992 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"10":1,
|
| 3 |
+
"11":1,
|
| 4 |
+
"12":1,
|
| 5 |
+
"13":1,
|
| 6 |
+
"14":1,
|
| 7 |
+
"15":1,
|
| 8 |
+
"16":2,
|
| 9 |
+
"17":2,
|
| 10 |
+
"18":2,
|
| 11 |
+
"19":2,
|
| 12 |
+
"20":2,
|
| 13 |
+
"21":2,
|
| 14 |
+
"22":2,
|
| 15 |
+
"23":2,
|
| 16 |
+
"24":3,
|
| 17 |
+
"25":3,
|
| 18 |
+
"26":3,
|
| 19 |
+
"27":3,
|
| 20 |
+
"28":3,
|
| 21 |
+
"29":3,
|
| 22 |
+
"30":3,
|
| 23 |
+
"31":3,
|
| 24 |
+
"32":4,
|
| 25 |
+
"33":4,
|
| 26 |
+
"34":4,
|
| 27 |
+
"35":4,
|
| 28 |
+
"36":4,
|
| 29 |
+
"37":4,
|
| 30 |
+
"38":4,
|
| 31 |
+
"39":4,
|
| 32 |
+
"40":5,
|
| 33 |
+
"41":5,
|
| 34 |
+
"42":5,
|
| 35 |
+
"43":5,
|
| 36 |
+
"44":5,
|
| 37 |
+
"45":5,
|
| 38 |
+
"46":5,
|
| 39 |
+
"47":5,
|
| 40 |
+
"48":6,
|
| 41 |
+
"49":6,
|
| 42 |
+
"50":6,
|
| 43 |
+
"51":6,
|
| 44 |
+
"52":6,
|
| 45 |
+
"53":6,
|
| 46 |
+
"54":6,
|
| 47 |
+
"55":6,
|
| 48 |
+
"56":7,
|
| 49 |
+
"57":7,
|
| 50 |
+
"58":7,
|
| 51 |
+
"59":7,
|
| 52 |
+
"60":7,
|
| 53 |
+
"61":7,
|
| 54 |
+
"62":7,
|
| 55 |
+
"63":7,
|
| 56 |
+
"64":8,
|
| 57 |
+
"65":8,
|
| 58 |
+
"66":8,
|
| 59 |
+
"67":8,
|
| 60 |
+
"68":8,
|
| 61 |
+
"69":8,
|
| 62 |
+
"70":8,
|
| 63 |
+
"71":8,
|
| 64 |
+
"72":9,
|
| 65 |
+
"73":9,
|
| 66 |
+
"74":9,
|
| 67 |
+
"75":9,
|
| 68 |
+
"76":9,
|
| 69 |
+
"77":9,
|
| 70 |
+
"78":9,
|
| 71 |
+
"79":9,
|
| 72 |
+
"80":10,
|
| 73 |
+
"81":10,
|
| 74 |
+
"82":10,
|
| 75 |
+
"83":10,
|
| 76 |
+
"84":10,
|
| 77 |
+
"85":10,
|
| 78 |
+
"86":10,
|
| 79 |
+
"87":10,
|
| 80 |
+
"88":11,
|
| 81 |
+
"89":11,
|
| 82 |
+
"90":11,
|
| 83 |
+
"91":11,
|
| 84 |
+
"92":11,
|
| 85 |
+
"93":11,
|
| 86 |
+
"94":11,
|
| 87 |
+
"95":11,
|
| 88 |
+
"96":12,
|
| 89 |
+
"97":12,
|
| 90 |
+
"98":12,
|
| 91 |
+
"99":12,
|
| 92 |
+
"100":12,
|
| 93 |
+
"101":12,
|
| 94 |
+
"102":12,
|
| 95 |
+
"103":12,
|
| 96 |
+
"104":13,
|
| 97 |
+
"105":13,
|
| 98 |
+
"106":13,
|
| 99 |
+
"107":13,
|
| 100 |
+
"108":13,
|
| 101 |
+
"109":13,
|
| 102 |
+
"110":13,
|
| 103 |
+
"111":13,
|
| 104 |
+
"112":14,
|
| 105 |
+
"113":14,
|
| 106 |
+
"114":14,
|
| 107 |
+
"115":14,
|
| 108 |
+
"116":14,
|
| 109 |
+
"117":14,
|
| 110 |
+
"118":14,
|
| 111 |
+
"119":14,
|
| 112 |
+
"120":15,
|
| 113 |
+
"121":15,
|
| 114 |
+
"122":15,
|
| 115 |
+
"123":15,
|
| 116 |
+
"124":15,
|
| 117 |
+
"125":15,
|
| 118 |
+
"126":15,
|
| 119 |
+
"127":15,
|
| 120 |
+
"128":16,
|
| 121 |
+
"129":16,
|
| 122 |
+
"130":16,
|
| 123 |
+
"131":16,
|
| 124 |
+
"132":16,
|
| 125 |
+
"133":16,
|
| 126 |
+
"134":16,
|
| 127 |
+
"135":16,
|
| 128 |
+
"136":17,
|
| 129 |
+
"137":17,
|
| 130 |
+
"138":17,
|
| 131 |
+
"139":17,
|
| 132 |
+
"140":17,
|
| 133 |
+
"141":17,
|
| 134 |
+
"142":17,
|
| 135 |
+
"143":17,
|
| 136 |
+
"144":18,
|
| 137 |
+
"145":18,
|
| 138 |
+
"146":18,
|
| 139 |
+
"147":18,
|
| 140 |
+
"148":18,
|
| 141 |
+
"149":18,
|
| 142 |
+
"150":18,
|
| 143 |
+
"151":18,
|
| 144 |
+
"152":19,
|
| 145 |
+
"153":19,
|
| 146 |
+
"154":19,
|
| 147 |
+
"155":19,
|
| 148 |
+
"156":19,
|
| 149 |
+
"157":19,
|
| 150 |
+
"158":19,
|
| 151 |
+
"159":19,
|
| 152 |
+
"160":20,
|
| 153 |
+
"161":20,
|
| 154 |
+
"162":20,
|
| 155 |
+
"163":20,
|
| 156 |
+
"164":20,
|
| 157 |
+
"165":20,
|
| 158 |
+
"166":20,
|
| 159 |
+
"167":20,
|
| 160 |
+
"168":21,
|
| 161 |
+
"169":21,
|
| 162 |
+
"170":21,
|
| 163 |
+
"171":21,
|
| 164 |
+
"172":21,
|
| 165 |
+
"173":21,
|
| 166 |
+
"174":21,
|
| 167 |
+
"175":21,
|
| 168 |
+
"176":22,
|
| 169 |
+
"177":22,
|
| 170 |
+
"178":22,
|
| 171 |
+
"179":22,
|
| 172 |
+
"180":22,
|
| 173 |
+
"181":22,
|
| 174 |
+
"182":22,
|
| 175 |
+
"183":22,
|
| 176 |
+
"184":23,
|
| 177 |
+
"185":23,
|
| 178 |
+
"186":23,
|
| 179 |
+
"187":23,
|
| 180 |
+
"188":23,
|
| 181 |
+
"189":23,
|
| 182 |
+
"190":23,
|
| 183 |
+
"191":23,
|
| 184 |
+
"192":24,
|
| 185 |
+
"193":24,
|
| 186 |
+
"194":24,
|
| 187 |
+
"195":24,
|
| 188 |
+
"196":24,
|
| 189 |
+
"197":24,
|
| 190 |
+
"198":24,
|
| 191 |
+
"199":24,
|
| 192 |
+
"200":25,
|
| 193 |
+
"201":25,
|
| 194 |
+
"202":25,
|
| 195 |
+
"203":25,
|
| 196 |
+
"204":25,
|
| 197 |
+
"205":25,
|
| 198 |
+
"206":25,
|
| 199 |
+
"207":25,
|
| 200 |
+
"208":26,
|
| 201 |
+
"209":26,
|
| 202 |
+
"210":26,
|
| 203 |
+
"211":26,
|
| 204 |
+
"212":26,
|
| 205 |
+
"213":26,
|
| 206 |
+
"214":26,
|
| 207 |
+
"215":26,
|
| 208 |
+
"216":27,
|
| 209 |
+
"217":27,
|
| 210 |
+
"218":27,
|
| 211 |
+
"219":27,
|
| 212 |
+
"220":27,
|
| 213 |
+
"221":27,
|
| 214 |
+
"222":27,
|
| 215 |
+
"223":27,
|
| 216 |
+
"224":28,
|
| 217 |
+
"225":28,
|
| 218 |
+
"226":28,
|
| 219 |
+
"227":28,
|
| 220 |
+
"228":28,
|
| 221 |
+
"229":28,
|
| 222 |
+
"230":28,
|
| 223 |
+
"231":28,
|
| 224 |
+
"232":29,
|
| 225 |
+
"233":29,
|
| 226 |
+
"234":29,
|
| 227 |
+
"235":29,
|
| 228 |
+
"236":29,
|
| 229 |
+
"237":29,
|
| 230 |
+
"238":29,
|
| 231 |
+
"239":29,
|
| 232 |
+
"240":30,
|
| 233 |
+
"241":30,
|
| 234 |
+
"242":30,
|
| 235 |
+
"243":30,
|
| 236 |
+
"244":30,
|
| 237 |
+
"245":30,
|
| 238 |
+
"246":30,
|
| 239 |
+
"247":30,
|
| 240 |
+
"248":31,
|
| 241 |
+
"249":31,
|
| 242 |
+
"250":31,
|
| 243 |
+
"251":31,
|
| 244 |
+
"252":31,
|
| 245 |
+
"253":31,
|
| 246 |
+
"254":31,
|
| 247 |
+
"255":31,
|
| 248 |
+
"256":32,
|
| 249 |
+
"257":32,
|
| 250 |
+
"258":32,
|
| 251 |
+
"259":32,
|
| 252 |
+
"260":32,
|
| 253 |
+
"261":32,
|
| 254 |
+
"262":32,
|
| 255 |
+
"263":32,
|
| 256 |
+
"264":33,
|
| 257 |
+
"265":33,
|
| 258 |
+
"266":33,
|
| 259 |
+
"267":33,
|
| 260 |
+
"268":33,
|
| 261 |
+
"269":33,
|
| 262 |
+
"270":33,
|
| 263 |
+
"271":33,
|
| 264 |
+
"272":34,
|
| 265 |
+
"273":34,
|
| 266 |
+
"274":34,
|
| 267 |
+
"275":34,
|
| 268 |
+
"276":34,
|
| 269 |
+
"277":34,
|
| 270 |
+
"278":34,
|
| 271 |
+
"279":34,
|
| 272 |
+
"280":35,
|
| 273 |
+
"281":35,
|
| 274 |
+
"282":35,
|
| 275 |
+
"283":35,
|
| 276 |
+
"284":35,
|
| 277 |
+
"285":35,
|
| 278 |
+
"286":35,
|
| 279 |
+
"287":35,
|
| 280 |
+
"288":36,
|
| 281 |
+
"289":36,
|
| 282 |
+
"290":36,
|
| 283 |
+
"291":36,
|
| 284 |
+
"292":36,
|
| 285 |
+
"293":36,
|
| 286 |
+
"294":36,
|
| 287 |
+
"295":36,
|
| 288 |
+
"296":37,
|
| 289 |
+
"297":37,
|
| 290 |
+
"298":37,
|
| 291 |
+
"299":37,
|
| 292 |
+
"300":37,
|
| 293 |
+
"301":37,
|
| 294 |
+
"302":37,
|
| 295 |
+
"303":37,
|
| 296 |
+
"304":38,
|
| 297 |
+
"305":38,
|
| 298 |
+
"306":38,
|
| 299 |
+
"307":38,
|
| 300 |
+
"308":38,
|
| 301 |
+
"309":38,
|
| 302 |
+
"310":38,
|
| 303 |
+
"311":38,
|
| 304 |
+
"312":39,
|
| 305 |
+
"313":39,
|
| 306 |
+
"314":39,
|
| 307 |
+
"315":39,
|
| 308 |
+
"316":39,
|
| 309 |
+
"317":39,
|
| 310 |
+
"318":39,
|
| 311 |
+
"319":39,
|
| 312 |
+
"320":40,
|
| 313 |
+
"321":40,
|
| 314 |
+
"322":40,
|
| 315 |
+
"323":40,
|
| 316 |
+
"324":40,
|
| 317 |
+
"325":40,
|
| 318 |
+
"326":40,
|
| 319 |
+
"327":40,
|
| 320 |
+
"328":41,
|
| 321 |
+
"329":41,
|
| 322 |
+
"330":41,
|
| 323 |
+
"331":41,
|
| 324 |
+
"332":41,
|
| 325 |
+
"333":41,
|
| 326 |
+
"334":41,
|
| 327 |
+
"335":41,
|
| 328 |
+
"336":42,
|
| 329 |
+
"337":42,
|
| 330 |
+
"338":42,
|
| 331 |
+
"339":42,
|
| 332 |
+
"340":42,
|
| 333 |
+
"341":42,
|
| 334 |
+
"342":42,
|
| 335 |
+
"343":42,
|
| 336 |
+
"344":43,
|
| 337 |
+
"345":43,
|
| 338 |
+
"346":43,
|
| 339 |
+
"347":43,
|
| 340 |
+
"348":43,
|
| 341 |
+
"349":43,
|
| 342 |
+
"350":43,
|
| 343 |
+
"351":43,
|
| 344 |
+
"352":44,
|
| 345 |
+
"353":44,
|
| 346 |
+
"354":44,
|
| 347 |
+
"355":44,
|
| 348 |
+
"356":44,
|
| 349 |
+
"357":44,
|
| 350 |
+
"358":44,
|
| 351 |
+
"359":44,
|
| 352 |
+
"360":45,
|
| 353 |
+
"361":45,
|
| 354 |
+
"362":45,
|
| 355 |
+
"363":45,
|
| 356 |
+
"364":45,
|
| 357 |
+
"365":45,
|
| 358 |
+
"366":45,
|
| 359 |
+
"367":45,
|
| 360 |
+
"368":46,
|
| 361 |
+
"369":46,
|
| 362 |
+
"370":46,
|
| 363 |
+
"371":46,
|
| 364 |
+
"372":46,
|
| 365 |
+
"373":46,
|
| 366 |
+
"374":46,
|
| 367 |
+
"375":46,
|
| 368 |
+
"376":47,
|
| 369 |
+
"377":47,
|
| 370 |
+
"378":47,
|
| 371 |
+
"379":47,
|
| 372 |
+
"380":47,
|
| 373 |
+
"381":47,
|
| 374 |
+
"382":47,
|
| 375 |
+
"383":47,
|
| 376 |
+
"384":48,
|
| 377 |
+
"385":48,
|
| 378 |
+
"386":48,
|
| 379 |
+
"387":48,
|
| 380 |
+
"388":48,
|
| 381 |
+
"389":48,
|
| 382 |
+
"390":48,
|
| 383 |
+
"391":48,
|
| 384 |
+
"392":49,
|
| 385 |
+
"393":49,
|
| 386 |
+
"394":49,
|
| 387 |
+
"395":49,
|
| 388 |
+
"396":49,
|
| 389 |
+
"397":49,
|
| 390 |
+
"398":49,
|
| 391 |
+
"399":49,
|
| 392 |
+
"400":50,
|
| 393 |
+
"401":50,
|
| 394 |
+
"402":50,
|
| 395 |
+
"403":50,
|
| 396 |
+
"404":50,
|
| 397 |
+
"405":50,
|
| 398 |
+
"406":50,
|
| 399 |
+
"407":50,
|
| 400 |
+
"408":51,
|
| 401 |
+
"409":51,
|
| 402 |
+
"410":51,
|
| 403 |
+
"411":51,
|
| 404 |
+
"412":51,
|
| 405 |
+
"413":51,
|
| 406 |
+
"414":51,
|
| 407 |
+
"415":51,
|
| 408 |
+
"416":52,
|
| 409 |
+
"417":52,
|
| 410 |
+
"418":52,
|
| 411 |
+
"419":52,
|
| 412 |
+
"420":52,
|
| 413 |
+
"421":52,
|
| 414 |
+
"422":52,
|
| 415 |
+
"423":52,
|
| 416 |
+
"424":53,
|
| 417 |
+
"425":53,
|
| 418 |
+
"426":53,
|
| 419 |
+
"427":53,
|
| 420 |
+
"428":53,
|
| 421 |
+
"429":53,
|
| 422 |
+
"430":53,
|
| 423 |
+
"431":53,
|
| 424 |
+
"432":54,
|
| 425 |
+
"433":54,
|
| 426 |
+
"434":54,
|
| 427 |
+
"435":54,
|
| 428 |
+
"436":54,
|
| 429 |
+
"437":54,
|
| 430 |
+
"438":54,
|
| 431 |
+
"439":54,
|
| 432 |
+
"440":55,
|
| 433 |
+
"441":55,
|
| 434 |
+
"442":55,
|
| 435 |
+
"443":55,
|
| 436 |
+
"444":55,
|
| 437 |
+
"445":55,
|
| 438 |
+
"446":55,
|
| 439 |
+
"447":55,
|
| 440 |
+
"448":56,
|
| 441 |
+
"449":56,
|
| 442 |
+
"450":56,
|
| 443 |
+
"451":56,
|
| 444 |
+
"452":56,
|
| 445 |
+
"453":56,
|
| 446 |
+
"454":56,
|
| 447 |
+
"455":56,
|
| 448 |
+
"456":57,
|
| 449 |
+
"457":57,
|
| 450 |
+
"458":57,
|
| 451 |
+
"459":57,
|
| 452 |
+
"460":57,
|
| 453 |
+
"461":57,
|
| 454 |
+
"462":57,
|
| 455 |
+
"463":57,
|
| 456 |
+
"464":58,
|
| 457 |
+
"465":58,
|
| 458 |
+
"466":58,
|
| 459 |
+
"467":58,
|
| 460 |
+
"468":58,
|
| 461 |
+
"469":58,
|
| 462 |
+
"470":58,
|
| 463 |
+
"471":58,
|
| 464 |
+
"472":59,
|
| 465 |
+
"473":59,
|
| 466 |
+
"474":59,
|
| 467 |
+
"475":59,
|
| 468 |
+
"476":59,
|
| 469 |
+
"477":59,
|
| 470 |
+
"478":59,
|
| 471 |
+
"479":59,
|
| 472 |
+
"480":60,
|
| 473 |
+
"481":60,
|
| 474 |
+
"482":60,
|
| 475 |
+
"483":60,
|
| 476 |
+
"484":60,
|
| 477 |
+
"485":60,
|
| 478 |
+
"486":60,
|
| 479 |
+
"487":60,
|
| 480 |
+
"488":61,
|
| 481 |
+
"489":61,
|
| 482 |
+
"490":61,
|
| 483 |
+
"491":61,
|
| 484 |
+
"492":61,
|
| 485 |
+
"493":61,
|
| 486 |
+
"494":61,
|
| 487 |
+
"495":61,
|
| 488 |
+
"496":62,
|
| 489 |
+
"497":62,
|
| 490 |
+
"498":62,
|
| 491 |
+
"499":62,
|
| 492 |
+
"500":62,
|
| 493 |
+
"501":62,
|
| 494 |
+
"502":62,
|
| 495 |
+
"503":62,
|
| 496 |
+
"504":63,
|
| 497 |
+
"505":63,
|
| 498 |
+
"506":63,
|
| 499 |
+
"507":63,
|
| 500 |
+
"508":63,
|
| 501 |
+
"509":63,
|
| 502 |
+
"510":63,
|
| 503 |
+
"511":63,
|
| 504 |
+
"512":64,
|
| 505 |
+
"513":64,
|
| 506 |
+
"514":64,
|
| 507 |
+
"515":64,
|
| 508 |
+
"516":64,
|
| 509 |
+
"517":64,
|
| 510 |
+
"518":64,
|
| 511 |
+
"519":64,
|
| 512 |
+
"520":65,
|
| 513 |
+
"521":65,
|
| 514 |
+
"522":65,
|
| 515 |
+
"523":65,
|
| 516 |
+
"524":65,
|
| 517 |
+
"525":65,
|
| 518 |
+
"526":65,
|
| 519 |
+
"527":65,
|
| 520 |
+
"528":66,
|
| 521 |
+
"529":66,
|
| 522 |
+
"530":66,
|
| 523 |
+
"531":66,
|
| 524 |
+
"532":66,
|
| 525 |
+
"533":66,
|
| 526 |
+
"534":66,
|
| 527 |
+
"535":66,
|
| 528 |
+
"536":67,
|
| 529 |
+
"537":67,
|
| 530 |
+
"538":67,
|
| 531 |
+
"539":67,
|
| 532 |
+
"540":67,
|
| 533 |
+
"541":67,
|
| 534 |
+
"542":67,
|
| 535 |
+
"543":67,
|
| 536 |
+
"544":68,
|
| 537 |
+
"545":68,
|
| 538 |
+
"546":68,
|
| 539 |
+
"547":68,
|
| 540 |
+
"548":68,
|
| 541 |
+
"549":68,
|
| 542 |
+
"550":68,
|
| 543 |
+
"551":68,
|
| 544 |
+
"552":69,
|
| 545 |
+
"553":69,
|
| 546 |
+
"554":69,
|
| 547 |
+
"555":69,
|
| 548 |
+
"556":69,
|
| 549 |
+
"557":69,
|
| 550 |
+
"558":69,
|
| 551 |
+
"559":69,
|
| 552 |
+
"560":70,
|
| 553 |
+
"561":70,
|
| 554 |
+
"562":70,
|
| 555 |
+
"563":70,
|
| 556 |
+
"564":70,
|
| 557 |
+
"565":70,
|
| 558 |
+
"566":70,
|
| 559 |
+
"567":70,
|
| 560 |
+
"568":71,
|
| 561 |
+
"569":71,
|
| 562 |
+
"570":71,
|
| 563 |
+
"571":71,
|
| 564 |
+
"572":71,
|
| 565 |
+
"573":71,
|
| 566 |
+
"574":71,
|
| 567 |
+
"575":71,
|
| 568 |
+
"576":72,
|
| 569 |
+
"577":72,
|
| 570 |
+
"578":72,
|
| 571 |
+
"579":72,
|
| 572 |
+
"580":72,
|
| 573 |
+
"581":72,
|
| 574 |
+
"582":72,
|
| 575 |
+
"583":72,
|
| 576 |
+
"584":73,
|
| 577 |
+
"585":73,
|
| 578 |
+
"586":73,
|
| 579 |
+
"587":73,
|
| 580 |
+
"588":73,
|
| 581 |
+
"589":73,
|
| 582 |
+
"590":73,
|
| 583 |
+
"591":73,
|
| 584 |
+
"592":74,
|
| 585 |
+
"593":74,
|
| 586 |
+
"594":74,
|
| 587 |
+
"595":74,
|
| 588 |
+
"596":74,
|
| 589 |
+
"597":74,
|
| 590 |
+
"598":74,
|
| 591 |
+
"599":74,
|
| 592 |
+
"600":75,
|
| 593 |
+
"601":75,
|
| 594 |
+
"602":75,
|
| 595 |
+
"603":75,
|
| 596 |
+
"604":75,
|
| 597 |
+
"605":75,
|
| 598 |
+
"606":75,
|
| 599 |
+
"607":75,
|
| 600 |
+
"608":76,
|
| 601 |
+
"609":76,
|
| 602 |
+
"610":76,
|
| 603 |
+
"611":76,
|
| 604 |
+
"612":76,
|
| 605 |
+
"613":76,
|
| 606 |
+
"614":76,
|
| 607 |
+
"615":76,
|
| 608 |
+
"616":77,
|
| 609 |
+
"617":77,
|
| 610 |
+
"618":77,
|
| 611 |
+
"619":77,
|
| 612 |
+
"620":77,
|
| 613 |
+
"621":77,
|
| 614 |
+
"622":77,
|
| 615 |
+
"623":77,
|
| 616 |
+
"624":78,
|
| 617 |
+
"625":78,
|
| 618 |
+
"626":78,
|
| 619 |
+
"627":78,
|
| 620 |
+
"628":78,
|
| 621 |
+
"629":78,
|
| 622 |
+
"630":78,
|
| 623 |
+
"631":78,
|
| 624 |
+
"632":79,
|
| 625 |
+
"633":79,
|
| 626 |
+
"634":79,
|
| 627 |
+
"635":79,
|
| 628 |
+
"636":79,
|
| 629 |
+
"637":79,
|
| 630 |
+
"638":79,
|
| 631 |
+
"639":79,
|
| 632 |
+
"640":80,
|
| 633 |
+
"641":80,
|
| 634 |
+
"642":80,
|
| 635 |
+
"643":80,
|
| 636 |
+
"644":80,
|
| 637 |
+
"645":80,
|
| 638 |
+
"646":80,
|
| 639 |
+
"647":80,
|
| 640 |
+
"648":81,
|
| 641 |
+
"649":81,
|
| 642 |
+
"650":81,
|
| 643 |
+
"651":81,
|
| 644 |
+
"652":81,
|
| 645 |
+
"653":81,
|
| 646 |
+
"654":81,
|
| 647 |
+
"655":81,
|
| 648 |
+
"656":82,
|
| 649 |
+
"657":82,
|
| 650 |
+
"658":82,
|
| 651 |
+
"659":82,
|
| 652 |
+
"660":82,
|
| 653 |
+
"661":82,
|
| 654 |
+
"662":82,
|
| 655 |
+
"663":82,
|
| 656 |
+
"664":83,
|
| 657 |
+
"665":83,
|
| 658 |
+
"666":83,
|
| 659 |
+
"667":83,
|
| 660 |
+
"668":83,
|
| 661 |
+
"669":83,
|
| 662 |
+
"670":83,
|
| 663 |
+
"671":83,
|
| 664 |
+
"672":84,
|
| 665 |
+
"673":84,
|
| 666 |
+
"674":84,
|
| 667 |
+
"675":84,
|
| 668 |
+
"676":84,
|
| 669 |
+
"677":84,
|
| 670 |
+
"678":84,
|
| 671 |
+
"679":84,
|
| 672 |
+
"680":85,
|
| 673 |
+
"681":85,
|
| 674 |
+
"682":85,
|
| 675 |
+
"683":85,
|
| 676 |
+
"684":85,
|
| 677 |
+
"685":85,
|
| 678 |
+
"686":85,
|
| 679 |
+
"687":85,
|
| 680 |
+
"688":86,
|
| 681 |
+
"689":86,
|
| 682 |
+
"690":86,
|
| 683 |
+
"691":86,
|
| 684 |
+
"692":86,
|
| 685 |
+
"693":86,
|
| 686 |
+
"694":86,
|
| 687 |
+
"695":86,
|
| 688 |
+
"696":87,
|
| 689 |
+
"697":87,
|
| 690 |
+
"698":87,
|
| 691 |
+
"699":87,
|
| 692 |
+
"700":87,
|
| 693 |
+
"701":87,
|
| 694 |
+
"702":87,
|
| 695 |
+
"703":87,
|
| 696 |
+
"704":88,
|
| 697 |
+
"705":88,
|
| 698 |
+
"706":88,
|
| 699 |
+
"707":88,
|
| 700 |
+
"708":88,
|
| 701 |
+
"709":88,
|
| 702 |
+
"710":88,
|
| 703 |
+
"711":88,
|
| 704 |
+
"712":89,
|
| 705 |
+
"713":89,
|
| 706 |
+
"714":89,
|
| 707 |
+
"715":89,
|
| 708 |
+
"716":89,
|
| 709 |
+
"717":89,
|
| 710 |
+
"718":89,
|
| 711 |
+
"719":89,
|
| 712 |
+
"720":90,
|
| 713 |
+
"721":90,
|
| 714 |
+
"722":90,
|
| 715 |
+
"723":90,
|
| 716 |
+
"724":90,
|
| 717 |
+
"725":90,
|
| 718 |
+
"726":90,
|
| 719 |
+
"727":90,
|
| 720 |
+
"728":91,
|
| 721 |
+
"729":91,
|
| 722 |
+
"730":91,
|
| 723 |
+
"731":91,
|
| 724 |
+
"732":91,
|
| 725 |
+
"733":91,
|
| 726 |
+
"734":91,
|
| 727 |
+
"735":91,
|
| 728 |
+
"736":92,
|
| 729 |
+
"737":92,
|
| 730 |
+
"738":92,
|
| 731 |
+
"739":92,
|
| 732 |
+
"740":92,
|
| 733 |
+
"741":92,
|
| 734 |
+
"742":92,
|
| 735 |
+
"743":92,
|
| 736 |
+
"744":93,
|
| 737 |
+
"745":93,
|
| 738 |
+
"746":93,
|
| 739 |
+
"747":93,
|
| 740 |
+
"748":93,
|
| 741 |
+
"749":93,
|
| 742 |
+
"750":93,
|
| 743 |
+
"751":93,
|
| 744 |
+
"752":94,
|
| 745 |
+
"753":94,
|
| 746 |
+
"754":94,
|
| 747 |
+
"755":94,
|
| 748 |
+
"756":94,
|
| 749 |
+
"757":94,
|
| 750 |
+
"758":94,
|
| 751 |
+
"759":94,
|
| 752 |
+
"760":95,
|
| 753 |
+
"761":95,
|
| 754 |
+
"762":95,
|
| 755 |
+
"763":95,
|
| 756 |
+
"764":95,
|
| 757 |
+
"765":95,
|
| 758 |
+
"766":95,
|
| 759 |
+
"767":95,
|
| 760 |
+
"768":96,
|
| 761 |
+
"769":96,
|
| 762 |
+
"770":96,
|
| 763 |
+
"771":96,
|
| 764 |
+
"772":96,
|
| 765 |
+
"773":96,
|
| 766 |
+
"774":96,
|
| 767 |
+
"775":96,
|
| 768 |
+
"776":97,
|
| 769 |
+
"777":97,
|
| 770 |
+
"778":97,
|
| 771 |
+
"779":97,
|
| 772 |
+
"780":97,
|
| 773 |
+
"781":97,
|
| 774 |
+
"782":97,
|
| 775 |
+
"783":97,
|
| 776 |
+
"784":98,
|
| 777 |
+
"785":98,
|
| 778 |
+
"786":98,
|
| 779 |
+
"787":98,
|
| 780 |
+
"788":98,
|
| 781 |
+
"789":98,
|
| 782 |
+
"790":98,
|
| 783 |
+
"791":98,
|
| 784 |
+
"792":99,
|
| 785 |
+
"793":99,
|
| 786 |
+
"794":99,
|
| 787 |
+
"795":99,
|
| 788 |
+
"796":99,
|
| 789 |
+
"797":99,
|
| 790 |
+
"798":99,
|
| 791 |
+
"799":99,
|
| 792 |
+
"800":100,
|
| 793 |
+
"801":100,
|
| 794 |
+
"802":100,
|
| 795 |
+
"803":100,
|
| 796 |
+
"804":100,
|
| 797 |
+
"805":100,
|
| 798 |
+
"806":100,
|
| 799 |
+
"807":100,
|
| 800 |
+
"808":101,
|
| 801 |
+
"809":101,
|
| 802 |
+
"810":101,
|
| 803 |
+
"811":101,
|
| 804 |
+
"812":101,
|
| 805 |
+
"813":101,
|
| 806 |
+
"814":101,
|
| 807 |
+
"815":101,
|
| 808 |
+
"816":102,
|
| 809 |
+
"817":102,
|
| 810 |
+
"818":102,
|
| 811 |
+
"819":102,
|
| 812 |
+
"820":102,
|
| 813 |
+
"821":102,
|
| 814 |
+
"822":102,
|
| 815 |
+
"823":102,
|
| 816 |
+
"824":103,
|
| 817 |
+
"825":103,
|
| 818 |
+
"826":103,
|
| 819 |
+
"827":103,
|
| 820 |
+
"828":103,
|
| 821 |
+
"829":103,
|
| 822 |
+
"830":103,
|
| 823 |
+
"831":103,
|
| 824 |
+
"832":104,
|
| 825 |
+
"833":104,
|
| 826 |
+
"834":104,
|
| 827 |
+
"835":104,
|
| 828 |
+
"836":104,
|
| 829 |
+
"837":104,
|
| 830 |
+
"838":104,
|
| 831 |
+
"839":104,
|
| 832 |
+
"840":105,
|
| 833 |
+
"841":105,
|
| 834 |
+
"842":105,
|
| 835 |
+
"843":105,
|
| 836 |
+
"844":105,
|
| 837 |
+
"845":105,
|
| 838 |
+
"846":105,
|
| 839 |
+
"847":105,
|
| 840 |
+
"848":106,
|
| 841 |
+
"849":106,
|
| 842 |
+
"850":106,
|
| 843 |
+
"851":106,
|
| 844 |
+
"852":106,
|
| 845 |
+
"853":106,
|
| 846 |
+
"854":106,
|
| 847 |
+
"855":106,
|
| 848 |
+
"856":107,
|
| 849 |
+
"857":107,
|
| 850 |
+
"858":107,
|
| 851 |
+
"859":107,
|
| 852 |
+
"860":107,
|
| 853 |
+
"861":107,
|
| 854 |
+
"862":107,
|
| 855 |
+
"863":107,
|
| 856 |
+
"864":108,
|
| 857 |
+
"865":108,
|
| 858 |
+
"866":108,
|
| 859 |
+
"867":108,
|
| 860 |
+
"868":108,
|
| 861 |
+
"869":108,
|
| 862 |
+
"870":108,
|
| 863 |
+
"871":108,
|
| 864 |
+
"872":109,
|
| 865 |
+
"873":109,
|
| 866 |
+
"874":109,
|
| 867 |
+
"875":109,
|
| 868 |
+
"876":109,
|
| 869 |
+
"877":109,
|
| 870 |
+
"878":109,
|
| 871 |
+
"879":109,
|
| 872 |
+
"880":110,
|
| 873 |
+
"881":110,
|
| 874 |
+
"882":110,
|
| 875 |
+
"883":110,
|
| 876 |
+
"884":110,
|
| 877 |
+
"885":110,
|
| 878 |
+
"886":110,
|
| 879 |
+
"887":110,
|
| 880 |
+
"888":111,
|
| 881 |
+
"889":111,
|
| 882 |
+
"890":111,
|
| 883 |
+
"891":111,
|
| 884 |
+
"892":111,
|
| 885 |
+
"893":111,
|
| 886 |
+
"894":111,
|
| 887 |
+
"895":111,
|
| 888 |
+
"896":112,
|
| 889 |
+
"897":112,
|
| 890 |
+
"898":112,
|
| 891 |
+
"899":112,
|
| 892 |
+
"900":112,
|
| 893 |
+
"901":112,
|
| 894 |
+
"902":112,
|
| 895 |
+
"903":112,
|
| 896 |
+
"904":113,
|
| 897 |
+
"905":113,
|
| 898 |
+
"906":113,
|
| 899 |
+
"907":113,
|
| 900 |
+
"908":113,
|
| 901 |
+
"909":113,
|
| 902 |
+
"910":113,
|
| 903 |
+
"911":113,
|
| 904 |
+
"912":114,
|
| 905 |
+
"913":114,
|
| 906 |
+
"914":114,
|
| 907 |
+
"915":114,
|
| 908 |
+
"916":114,
|
| 909 |
+
"917":114,
|
| 910 |
+
"918":114,
|
| 911 |
+
"919":114,
|
| 912 |
+
"920":115,
|
| 913 |
+
"921":115,
|
| 914 |
+
"922":115,
|
| 915 |
+
"923":115,
|
| 916 |
+
"924":115,
|
| 917 |
+
"925":115,
|
| 918 |
+
"926":115,
|
| 919 |
+
"927":115,
|
| 920 |
+
"928":116,
|
| 921 |
+
"929":116,
|
| 922 |
+
"930":116,
|
| 923 |
+
"931":116,
|
| 924 |
+
"932":116,
|
| 925 |
+
"933":116,
|
| 926 |
+
"934":116,
|
| 927 |
+
"935":116,
|
| 928 |
+
"936":117,
|
| 929 |
+
"937":117,
|
| 930 |
+
"938":117,
|
| 931 |
+
"939":117,
|
| 932 |
+
"940":117,
|
| 933 |
+
"941":117,
|
| 934 |
+
"942":117,
|
| 935 |
+
"943":117,
|
| 936 |
+
"944":118,
|
| 937 |
+
"945":118,
|
| 938 |
+
"946":118,
|
| 939 |
+
"947":118,
|
| 940 |
+
"948":118,
|
| 941 |
+
"949":118,
|
| 942 |
+
"950":118,
|
| 943 |
+
"951":118,
|
| 944 |
+
"952":119,
|
| 945 |
+
"953":119,
|
| 946 |
+
"954":119,
|
| 947 |
+
"955":119,
|
| 948 |
+
"956":119,
|
| 949 |
+
"957":119,
|
| 950 |
+
"958":119,
|
| 951 |
+
"959":119,
|
| 952 |
+
"960":120,
|
| 953 |
+
"961":120,
|
| 954 |
+
"962":120,
|
| 955 |
+
"963":120,
|
| 956 |
+
"964":120,
|
| 957 |
+
"965":120,
|
| 958 |
+
"966":120,
|
| 959 |
+
"967":120,
|
| 960 |
+
"968":121,
|
| 961 |
+
"969":121,
|
| 962 |
+
"970":121,
|
| 963 |
+
"971":121,
|
| 964 |
+
"972":121,
|
| 965 |
+
"973":121,
|
| 966 |
+
"974":121,
|
| 967 |
+
"975":121,
|
| 968 |
+
"976":122,
|
| 969 |
+
"977":122,
|
| 970 |
+
"978":122,
|
| 971 |
+
"979":122,
|
| 972 |
+
"980":122,
|
| 973 |
+
"981":122,
|
| 974 |
+
"982":122,
|
| 975 |
+
"983":122,
|
| 976 |
+
"984":123,
|
| 977 |
+
"985":123,
|
| 978 |
+
"986":123,
|
| 979 |
+
"987":123,
|
| 980 |
+
"988":123,
|
| 981 |
+
"989":123,
|
| 982 |
+
"990":123,
|
| 983 |
+
"991":123,
|
| 984 |
+
"992":124,
|
| 985 |
+
"993":124,
|
| 986 |
+
"994":124,
|
| 987 |
+
"995":124,
|
| 988 |
+
"996":124,
|
| 989 |
+
"997":124,
|
| 990 |
+
"998":124,
|
| 991 |
+
"999":124
|
| 992 |
+
}
|
src/hand_model_outputsize.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
from src.model import handpose_model
|
| 6 |
+
|
| 7 |
+
model = handpose_model()
|
| 8 |
+
|
| 9 |
+
size = {}
|
| 10 |
+
for i in tqdm(range(10, 1000)):
|
| 11 |
+
data = torch.randn(1, 3, i, i)
|
| 12 |
+
if torch.cuda.is_available():
|
| 13 |
+
data = data.cuda()
|
| 14 |
+
size[i] = model(data).size(2)
|
| 15 |
+
|
| 16 |
+
with open('hand_model_output_size.json') as f:
|
| 17 |
+
json.dump(size, f)
|
src/model.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from collections import OrderedDict
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
def make_layers(block, no_relu_layers):
|
| 8 |
+
layers = []
|
| 9 |
+
for layer_name, v in block.items():
|
| 10 |
+
if 'pool' in layer_name:
|
| 11 |
+
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
|
| 12 |
+
padding=v[2])
|
| 13 |
+
layers.append((layer_name, layer))
|
| 14 |
+
else:
|
| 15 |
+
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
|
| 16 |
+
kernel_size=v[2], stride=v[3],
|
| 17 |
+
padding=v[4])
|
| 18 |
+
layers.append((layer_name, conv2d))
|
| 19 |
+
if layer_name not in no_relu_layers:
|
| 20 |
+
layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))
|
| 21 |
+
|
| 22 |
+
return nn.Sequential(OrderedDict(layers))
|
| 23 |
+
|
| 24 |
+
class bodypose_model(nn.Module):
|
| 25 |
+
def __init__(self):
|
| 26 |
+
super(bodypose_model, self).__init__()
|
| 27 |
+
|
| 28 |
+
# these layers have no relu layer
|
| 29 |
+
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
|
| 30 |
+
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
|
| 31 |
+
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
|
| 32 |
+
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
|
| 33 |
+
blocks = {}
|
| 34 |
+
block0 = OrderedDict([
|
| 35 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
| 36 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
| 37 |
+
('pool1_stage1', [2, 2, 0]),
|
| 38 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
| 39 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
| 40 |
+
('pool2_stage1', [2, 2, 0]),
|
| 41 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
| 42 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
| 43 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
| 44 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
| 45 |
+
('pool3_stage1', [2, 2, 0]),
|
| 46 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
| 47 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
| 48 |
+
('conv4_3_CPM', [512, 256, 3, 1, 1]),
|
| 49 |
+
('conv4_4_CPM', [256, 128, 3, 1, 1])
|
| 50 |
+
])
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# Stage 1
|
| 54 |
+
block1_1 = OrderedDict([
|
| 55 |
+
('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
|
| 56 |
+
('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
|
| 57 |
+
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
|
| 58 |
+
('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
|
| 59 |
+
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
|
| 60 |
+
])
|
| 61 |
+
|
| 62 |
+
block1_2 = OrderedDict([
|
| 63 |
+
('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
|
| 64 |
+
('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
|
| 65 |
+
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
|
| 66 |
+
('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
|
| 67 |
+
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
|
| 68 |
+
])
|
| 69 |
+
blocks['block1_1'] = block1_1
|
| 70 |
+
blocks['block1_2'] = block1_2
|
| 71 |
+
|
| 72 |
+
self.model0 = make_layers(block0, no_relu_layers)
|
| 73 |
+
|
| 74 |
+
# Stages 2 - 6
|
| 75 |
+
for i in range(2, 7):
|
| 76 |
+
blocks['block%d_1' % i] = OrderedDict([
|
| 77 |
+
('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
|
| 78 |
+
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
| 79 |
+
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
| 80 |
+
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
| 81 |
+
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
| 82 |
+
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
|
| 83 |
+
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
|
| 84 |
+
])
|
| 85 |
+
|
| 86 |
+
blocks['block%d_2' % i] = OrderedDict([
|
| 87 |
+
('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
|
| 88 |
+
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
| 89 |
+
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
| 90 |
+
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
| 91 |
+
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
| 92 |
+
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
|
| 93 |
+
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
|
| 94 |
+
])
|
| 95 |
+
|
| 96 |
+
for k in blocks.keys():
|
| 97 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
| 98 |
+
|
| 99 |
+
self.model1_1 = blocks['block1_1']
|
| 100 |
+
self.model2_1 = blocks['block2_1']
|
| 101 |
+
self.model3_1 = blocks['block3_1']
|
| 102 |
+
self.model4_1 = blocks['block4_1']
|
| 103 |
+
self.model5_1 = blocks['block5_1']
|
| 104 |
+
self.model6_1 = blocks['block6_1']
|
| 105 |
+
|
| 106 |
+
self.model1_2 = blocks['block1_2']
|
| 107 |
+
self.model2_2 = blocks['block2_2']
|
| 108 |
+
self.model3_2 = blocks['block3_2']
|
| 109 |
+
self.model4_2 = blocks['block4_2']
|
| 110 |
+
self.model5_2 = blocks['block5_2']
|
| 111 |
+
self.model6_2 = blocks['block6_2']
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
|
| 116 |
+
out1 = self.model0(x)
|
| 117 |
+
|
| 118 |
+
out1_1 = self.model1_1(out1)
|
| 119 |
+
out1_2 = self.model1_2(out1)
|
| 120 |
+
out2 = torch.cat([out1_1, out1_2, out1], 1)
|
| 121 |
+
|
| 122 |
+
out2_1 = self.model2_1(out2)
|
| 123 |
+
out2_2 = self.model2_2(out2)
|
| 124 |
+
out3 = torch.cat([out2_1, out2_2, out1], 1)
|
| 125 |
+
|
| 126 |
+
out3_1 = self.model3_1(out3)
|
| 127 |
+
out3_2 = self.model3_2(out3)
|
| 128 |
+
out4 = torch.cat([out3_1, out3_2, out1], 1)
|
| 129 |
+
|
| 130 |
+
out4_1 = self.model4_1(out4)
|
| 131 |
+
out4_2 = self.model4_2(out4)
|
| 132 |
+
out5 = torch.cat([out4_1, out4_2, out1], 1)
|
| 133 |
+
|
| 134 |
+
out5_1 = self.model5_1(out5)
|
| 135 |
+
out5_2 = self.model5_2(out5)
|
| 136 |
+
out6 = torch.cat([out5_1, out5_2, out1], 1)
|
| 137 |
+
|
| 138 |
+
out6_1 = self.model6_1(out6)
|
| 139 |
+
out6_2 = self.model6_2(out6)
|
| 140 |
+
|
| 141 |
+
return out6_1, out6_2
|
| 142 |
+
|
| 143 |
+
class handpose_model(nn.Module):
|
| 144 |
+
def __init__(self):
|
| 145 |
+
super(handpose_model, self).__init__()
|
| 146 |
+
|
| 147 |
+
# these layers have no relu layer
|
| 148 |
+
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
|
| 149 |
+
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
|
| 150 |
+
# stage 1
|
| 151 |
+
block1_0 = OrderedDict([
|
| 152 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
| 153 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
| 154 |
+
('pool1_stage1', [2, 2, 0]),
|
| 155 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
| 156 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
| 157 |
+
('pool2_stage1', [2, 2, 0]),
|
| 158 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
| 159 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
| 160 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
| 161 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
| 162 |
+
('pool3_stage1', [2, 2, 0]),
|
| 163 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
| 164 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
| 165 |
+
('conv4_3', [512, 512, 3, 1, 1]),
|
| 166 |
+
('conv4_4', [512, 512, 3, 1, 1]),
|
| 167 |
+
('conv5_1', [512, 512, 3, 1, 1]),
|
| 168 |
+
('conv5_2', [512, 512, 3, 1, 1]),
|
| 169 |
+
('conv5_3_CPM', [512, 128, 3, 1, 1])
|
| 170 |
+
])
|
| 171 |
+
|
| 172 |
+
block1_1 = OrderedDict([
|
| 173 |
+
('conv6_1_CPM', [128, 512, 1, 1, 0]),
|
| 174 |
+
('conv6_2_CPM', [512, 22, 1, 1, 0])
|
| 175 |
+
])
|
| 176 |
+
|
| 177 |
+
blocks = {}
|
| 178 |
+
blocks['block1_0'] = block1_0
|
| 179 |
+
blocks['block1_1'] = block1_1
|
| 180 |
+
|
| 181 |
+
# stage 2-6
|
| 182 |
+
for i in range(2, 7):
|
| 183 |
+
blocks['block%d' % i] = OrderedDict([
|
| 184 |
+
('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
|
| 185 |
+
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
|
| 186 |
+
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
|
| 187 |
+
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
|
| 188 |
+
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
|
| 189 |
+
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
|
| 190 |
+
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
|
| 191 |
+
])
|
| 192 |
+
|
| 193 |
+
for k in blocks.keys():
|
| 194 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
| 195 |
+
|
| 196 |
+
self.model1_0 = blocks['block1_0']
|
| 197 |
+
self.model1_1 = blocks['block1_1']
|
| 198 |
+
self.model2 = blocks['block2']
|
| 199 |
+
self.model3 = blocks['block3']
|
| 200 |
+
self.model4 = blocks['block4']
|
| 201 |
+
self.model5 = blocks['block5']
|
| 202 |
+
self.model6 = blocks['block6']
|
| 203 |
+
|
| 204 |
+
def forward(self, x):
|
| 205 |
+
out1_0 = self.model1_0(x)
|
| 206 |
+
out1_1 = self.model1_1(out1_0)
|
| 207 |
+
concat_stage2 = torch.cat([out1_1, out1_0], 1)
|
| 208 |
+
out_stage2 = self.model2(concat_stage2)
|
| 209 |
+
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
|
| 210 |
+
out_stage3 = self.model3(concat_stage3)
|
| 211 |
+
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
|
| 212 |
+
out_stage4 = self.model4(concat_stage4)
|
| 213 |
+
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
|
| 214 |
+
out_stage5 = self.model5(concat_stage5)
|
| 215 |
+
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
|
| 216 |
+
out_stage6 = self.model6(concat_stage6)
|
| 217 |
+
return out_stage6
|
| 218 |
+
|
| 219 |
+
|
src/util.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import math
|
| 3 |
+
import cv2
|
| 4 |
+
import matplotlib
|
| 5 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
| 6 |
+
from matplotlib.figure import Figure
|
| 7 |
+
import numpy as np
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import cv2
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def padRightDownCorner(img, stride, padValue):
|
| 13 |
+
h = img.shape[0]
|
| 14 |
+
w = img.shape[1]
|
| 15 |
+
|
| 16 |
+
pad = 4 * [None]
|
| 17 |
+
pad[0] = 0 # up
|
| 18 |
+
pad[1] = 0 # left
|
| 19 |
+
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
| 20 |
+
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
| 21 |
+
|
| 22 |
+
img_padded = img
|
| 23 |
+
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
| 24 |
+
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
| 25 |
+
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
| 26 |
+
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
| 27 |
+
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
| 28 |
+
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
| 29 |
+
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
| 30 |
+
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
| 31 |
+
|
| 32 |
+
return img_padded, pad
|
| 33 |
+
|
| 34 |
+
# transfer caffe model to pytorch which will match the layer name
|
| 35 |
+
def transfer(model, model_weights):
|
| 36 |
+
transfered_model_weights = {}
|
| 37 |
+
for weights_name in model.state_dict().keys():
|
| 38 |
+
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
| 39 |
+
return transfered_model_weights
|
| 40 |
+
|
| 41 |
+
# draw the body keypoint and lims
|
| 42 |
+
def draw_bodypose(canvas, candidate, subset):
|
| 43 |
+
stickwidth = 4
|
| 44 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
| 45 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
| 46 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
| 47 |
+
|
| 48 |
+
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
| 49 |
+
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
| 50 |
+
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
| 51 |
+
for i in range(18):
|
| 52 |
+
for n in range(len(subset)):
|
| 53 |
+
index = int(subset[n][i])
|
| 54 |
+
if index == -1:
|
| 55 |
+
continue
|
| 56 |
+
x, y = candidate[index][0:2]
|
| 57 |
+
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
| 58 |
+
for i in range(17):
|
| 59 |
+
for n in range(len(subset)):
|
| 60 |
+
index = subset[n][np.array(limbSeq[i]) - 1]
|
| 61 |
+
if -1 in index:
|
| 62 |
+
continue
|
| 63 |
+
cur_canvas = canvas.copy()
|
| 64 |
+
Y = candidate[index.astype(int), 0]
|
| 65 |
+
X = candidate[index.astype(int), 1]
|
| 66 |
+
mX = np.mean(X)
|
| 67 |
+
mY = np.mean(Y)
|
| 68 |
+
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
| 69 |
+
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
| 70 |
+
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
| 71 |
+
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
|
| 72 |
+
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
| 73 |
+
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
|
| 74 |
+
# plt.imshow(canvas[:, :, [2, 1, 0]])
|
| 75 |
+
return canvas
|
| 76 |
+
|
| 77 |
+
def draw_handpose(canvas, all_hand_peaks, show_number=False):
|
| 78 |
+
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
| 79 |
+
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
| 80 |
+
fig = Figure(figsize=plt.figaspect(canvas))
|
| 81 |
+
|
| 82 |
+
fig.subplots_adjust(0, 0, 1, 1)
|
| 83 |
+
fig.subplots_adjust(bottom=0, top=1, left=0, right=1)
|
| 84 |
+
bg = FigureCanvas(fig)
|
| 85 |
+
ax = fig.subplots()
|
| 86 |
+
ax.axis('off')
|
| 87 |
+
ax.imshow(canvas)
|
| 88 |
+
|
| 89 |
+
width, height = ax.figure.get_size_inches() * ax.figure.get_dpi()
|
| 90 |
+
|
| 91 |
+
for peaks in all_hand_peaks:
|
| 92 |
+
for ie, e in enumerate(edges):
|
| 93 |
+
if np.sum(np.all(peaks[e], axis=1)==0)==0:
|
| 94 |
+
x1, y1 = peaks[e[0]]
|
| 95 |
+
x2, y2 = peaks[e[1]]
|
| 96 |
+
ax.plot([x1, x2], [y1, y2], color=matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0]))
|
| 97 |
+
|
| 98 |
+
for i, keyponit in enumerate(peaks):
|
| 99 |
+
x, y = keyponit
|
| 100 |
+
ax.plot(x, y, 'r.')
|
| 101 |
+
if show_number:
|
| 102 |
+
ax.text(x, y, str(i))
|
| 103 |
+
bg.draw()
|
| 104 |
+
canvas = np.fromstring(bg.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
|
| 105 |
+
return canvas
|
| 106 |
+
|
| 107 |
+
# image drawed by opencv is not good.
|
| 108 |
+
def draw_handpose_by_opencv(canvas, peaks, show_number=False):
|
| 109 |
+
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
| 110 |
+
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
| 111 |
+
# cv2.rectangle(canvas, (x, y), (x+w, y+w), (0, 255, 0), 2, lineType=cv2.LINE_AA)
|
| 112 |
+
# cv2.putText(canvas, 'left' if is_left else 'right', (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
| 113 |
+
for ie, e in enumerate(edges):
|
| 114 |
+
if np.sum(np.all(peaks[e], axis=1)==0)==0:
|
| 115 |
+
x1, y1 = peaks[e[0]]
|
| 116 |
+
x2, y2 = peaks[e[1]]
|
| 117 |
+
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
|
| 118 |
+
|
| 119 |
+
for i, keyponit in enumerate(peaks):
|
| 120 |
+
x, y = keyponit
|
| 121 |
+
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
| 122 |
+
if show_number:
|
| 123 |
+
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
|
| 124 |
+
return canvas
|
| 125 |
+
|
| 126 |
+
# detect hand according to body pose keypoints
|
| 127 |
+
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
| 128 |
+
def handDetect(candidate, subset, oriImg):
|
| 129 |
+
# right hand: wrist 4, elbow 3, shoulder 2
|
| 130 |
+
# left hand: wrist 7, elbow 6, shoulder 5
|
| 131 |
+
ratioWristElbow = 0.33
|
| 132 |
+
detect_result = []
|
| 133 |
+
image_height, image_width = oriImg.shape[0:2]
|
| 134 |
+
for person in subset.astype(int):
|
| 135 |
+
# if any of three not detected
|
| 136 |
+
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
| 137 |
+
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
| 138 |
+
if not (has_left or has_right):
|
| 139 |
+
continue
|
| 140 |
+
hands = []
|
| 141 |
+
#left hand
|
| 142 |
+
if has_left:
|
| 143 |
+
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
| 144 |
+
x1, y1 = candidate[left_shoulder_index][:2]
|
| 145 |
+
x2, y2 = candidate[left_elbow_index][:2]
|
| 146 |
+
x3, y3 = candidate[left_wrist_index][:2]
|
| 147 |
+
hands.append([x1, y1, x2, y2, x3, y3, True])
|
| 148 |
+
# right hand
|
| 149 |
+
if has_right:
|
| 150 |
+
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
| 151 |
+
x1, y1 = candidate[right_shoulder_index][:2]
|
| 152 |
+
x2, y2 = candidate[right_elbow_index][:2]
|
| 153 |
+
x3, y3 = candidate[right_wrist_index][:2]
|
| 154 |
+
hands.append([x1, y1, x2, y2, x3, y3, False])
|
| 155 |
+
|
| 156 |
+
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
| 157 |
+
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
| 158 |
+
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
| 159 |
+
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
| 160 |
+
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
| 161 |
+
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
| 162 |
+
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
| 163 |
+
x = x3 + ratioWristElbow * (x3 - x2)
|
| 164 |
+
y = y3 + ratioWristElbow * (y3 - y2)
|
| 165 |
+
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
| 166 |
+
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
| 167 |
+
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
| 168 |
+
# x-y refers to the center --> offset to topLeft point
|
| 169 |
+
# handRectangle.x -= handRectangle.width / 2.f;
|
| 170 |
+
# handRectangle.y -= handRectangle.height / 2.f;
|
| 171 |
+
x -= width / 2
|
| 172 |
+
y -= width / 2 # width = height
|
| 173 |
+
# overflow the image
|
| 174 |
+
if x < 0: x = 0
|
| 175 |
+
if y < 0: y = 0
|
| 176 |
+
width1 = width
|
| 177 |
+
width2 = width
|
| 178 |
+
if x + width > image_width: width1 = image_width - x
|
| 179 |
+
if y + width > image_height: width2 = image_height - y
|
| 180 |
+
width = min(width1, width2)
|
| 181 |
+
# the max hand box value is 20 pixels
|
| 182 |
+
if width >= 20:
|
| 183 |
+
detect_result.append([int(x), int(y), int(width), is_left])
|
| 184 |
+
|
| 185 |
+
'''
|
| 186 |
+
return value: [[x, y, w, True if left hand else False]].
|
| 187 |
+
width=height since the network require squared input.
|
| 188 |
+
x, y is the coordinate of top left
|
| 189 |
+
'''
|
| 190 |
+
return detect_result
|
| 191 |
+
|
| 192 |
+
# get max index of 2d array
|
| 193 |
+
def npmax(array):
|
| 194 |
+
arrayindex = array.argmax(1)
|
| 195 |
+
arrayvalue = array.max(1)
|
| 196 |
+
i = arrayvalue.argmax()
|
| 197 |
+
j = arrayindex[i]
|
| 198 |
+
return i, j
|
test.png
ADDED
|
test_full2.jpg
ADDED
|