Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ color_map = {
|
|
16 |
'20%': green.c200,
|
17 |
'30%': green.c100,
|
18 |
'40%': green.c50,
|
19 |
-
'50%':
|
20 |
'60%': red.c50,
|
21 |
'70%': red.c100,
|
22 |
'80%': red.c200,
|
@@ -31,23 +31,26 @@ def predict_doc(doc):
|
|
31 |
res = []
|
32 |
for sent in sents:
|
33 |
prob = predict_one_sent(sent)
|
|
|
34 |
data['sentence'].append(sent)
|
35 |
data['score'].append(round(prob, 4))
|
|
|
|
|
|
|
|
|
36 |
if prob < 0.1: label = '0%'
|
37 |
elif prob < 0.2: label = '10%'
|
38 |
-
elif prob < 0.3: label = '20%'
|
39 |
-
elif prob < 0.4: label = '30%'
|
40 |
-
elif prob < 0.5: label = '40%'
|
41 |
-
elif prob < 0.6: label = '50%'
|
42 |
-
elif prob < 0.7: label = '60%'
|
43 |
-
elif prob < 0.8: label = '70%'
|
44 |
-
elif prob < 0.9: label = '80%'
|
45 |
elif prob < 1: label = '90%'
|
46 |
else: label = '100%'
|
47 |
res.append((sent, label))
|
48 |
-
|
49 |
-
data['label'].append('Human')
|
50 |
-
else: data['label'].append('Machine')
|
51 |
df = pd.DataFrame(data)
|
52 |
df.to_csv('result.csv')
|
53 |
overall_score = df.score.mean()
|
@@ -55,7 +58,7 @@ def predict_doc(doc):
|
|
55 |
if overall_score <= 0.5: overall_label = 'Human'
|
56 |
else: overall_label = 'Machine'
|
57 |
sum_str = f'The essay is probably written by {overall_label}. The probability of being generated by AI is {overall_score}'
|
58 |
-
|
59 |
return sum_str, res, df, 'result.csv'
|
60 |
|
61 |
|
@@ -72,24 +75,32 @@ def predict_one_sent(sent):
|
|
72 |
|
73 |
|
74 |
with gr.Blocks() as demo:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
tab = gr.DataFrame(
|
86 |
label='Table with Probability Score',
|
87 |
-
max_rows=
|
88 |
-
)
|
89 |
-
csv_f = gr.File(
|
90 |
-
label='CSV file storing data with all sentences.'
|
91 |
)
|
92 |
-
|
93 |
|
94 |
demo.launch()
|
95 |
|
|
|
16 |
'20%': green.c200,
|
17 |
'30%': green.c100,
|
18 |
'40%': green.c50,
|
19 |
+
'50%': '#ffffff',
|
20 |
'60%': red.c50,
|
21 |
'70%': red.c100,
|
22 |
'80%': red.c200,
|
|
|
31 |
res = []
|
32 |
for sent in sents:
|
33 |
prob = predict_one_sent(sent)
|
34 |
+
|
35 |
data['sentence'].append(sent)
|
36 |
data['score'].append(round(prob, 4))
|
37 |
+
if prob <= 0.5:
|
38 |
+
data['label'].append('Human')
|
39 |
+
else: data['label'].append('Machine')
|
40 |
+
|
41 |
if prob < 0.1: label = '0%'
|
42 |
elif prob < 0.2: label = '10%'
|
43 |
+
elif prob < 0.3: label = '20%'
|
44 |
+
elif prob < 0.4: label = '30%'
|
45 |
+
elif prob < 0.5: label = '40%'
|
46 |
+
elif prob < 0.6: label = '50%'
|
47 |
+
elif prob < 0.7: label = '60%'
|
48 |
+
elif prob < 0.8: label = '70%'
|
49 |
+
elif prob < 0.9: label = '80%'
|
50 |
elif prob < 1: label = '90%'
|
51 |
else: label = '100%'
|
52 |
res.append((sent, label))
|
53 |
+
|
|
|
|
|
54 |
df = pd.DataFrame(data)
|
55 |
df.to_csv('result.csv')
|
56 |
overall_score = df.score.mean()
|
|
|
58 |
if overall_score <= 0.5: overall_label = 'Human'
|
59 |
else: overall_label = 'Machine'
|
60 |
sum_str = f'The essay is probably written by {overall_label}. The probability of being generated by AI is {overall_score}'
|
61 |
+
|
62 |
return sum_str, res, df, 'result.csv'
|
63 |
|
64 |
|
|
|
75 |
|
76 |
|
77 |
with gr.Blocks() as demo:
|
78 |
+
with gr.Row():
|
79 |
+
with gr.Column():
|
80 |
+
text_in = gr.Textbox(
|
81 |
+
lines=5,
|
82 |
+
label='Essay input',
|
83 |
+
info='Please enter the essay in the textbox'
|
84 |
+
)
|
85 |
+
btn = gr.Button('Predict who writes this essay!')
|
86 |
+
|
87 |
+
sent_res = gr.Highlight(
|
88 |
+
label='Labeled Result'
|
89 |
+
).style(color_map=color_map)
|
90 |
+
|
91 |
+
with gr.Row():
|
92 |
+
summary = gr.Text(
|
93 |
+
label='Result summary'
|
94 |
+
)
|
95 |
+
csv_f = gr.File(
|
96 |
+
label='CSV file storing data with all sentences.'
|
97 |
+
)
|
98 |
+
|
99 |
tab = gr.DataFrame(
|
100 |
label='Table with Probability Score',
|
101 |
+
max_rows=100
|
|
|
|
|
|
|
102 |
)
|
103 |
+
btn.click(predict_doc, inputs=[text_in], outputs=[summary, sent_res, tab, csv_f], api_name='predict_doc')
|
104 |
|
105 |
demo.launch()
|
106 |
|