|
from typing import Dict |
|
import numpy as np |
|
from omegaconf import DictConfig, ListConfig |
|
import torch |
|
from torch.utils.data import Dataset |
|
from pathlib import Path |
|
import json |
|
from PIL import Image |
|
from torchvision import transforms |
|
from einops import rearrange |
|
from typing import Literal, Tuple, Optional, Any |
|
import cv2 |
|
import random |
|
|
|
import json |
|
import os, sys |
|
import math |
|
|
|
import PIL.Image |
|
from .normal_utils import trans_normal, normal2img, img2normal |
|
import pdb |
|
|
|
|
|
class ObjaverseDataset(Dataset): |
|
def __init__(self, |
|
root_dir: str, |
|
num_views: int, |
|
bg_color: Any, |
|
img_wh: Tuple[int, int], |
|
object_list: str, |
|
groups_num: int=1, |
|
validation: bool = False, |
|
data_view_num: int = 6, |
|
num_validation_samples: int = 64, |
|
num_samples: Optional[int] = None, |
|
invalid_list: Optional[str] = None, |
|
trans_norm_system: bool = True, |
|
augment_data: bool = False, |
|
read_normal: bool = True, |
|
read_color: bool = False, |
|
read_depth: bool = False, |
|
read_mask: bool = True, |
|
mix_color_normal: bool = False, |
|
suffix: str = 'png', |
|
subscene_tag: int = 3, |
|
backup_scene: str = "9438abf986c7453a9f4df7c34aa2e65b" |
|
) -> None: |
|
"""Create a dataset from a folder of images. |
|
If you pass in a root directory it will be searched for images |
|
ending in ext (ext can be a list) |
|
""" |
|
self.root_dir = Path(root_dir) |
|
self.num_views = num_views |
|
self.bg_color = bg_color |
|
self.validation = validation |
|
self.num_samples = num_samples |
|
self.trans_norm_system = trans_norm_system |
|
self.augment_data = augment_data |
|
self.invalid_list = invalid_list |
|
self.groups_num = groups_num |
|
print("augment data: ", self.augment_data) |
|
self.img_wh = img_wh |
|
self.read_normal = read_normal |
|
self.read_color = read_color |
|
self.read_depth = read_depth |
|
self.read_mask = read_mask |
|
self.mix_color_normal = mix_color_normal |
|
self.suffix = suffix |
|
self.subscene_tag = subscene_tag |
|
|
|
self.view_types = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] |
|
self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views" |
|
|
|
self.fix_cam_poses = self.load_fixed_poses() |
|
|
|
if object_list is not None: |
|
with open(object_list) as f: |
|
self.objects = json.load(f) |
|
self.objects = [os.path.basename(o).replace(".glb", "") for o in self.objects] |
|
else: |
|
self.objects = os.listdir(self.root_dir) |
|
self.objects = sorted(self.objects) |
|
|
|
if self.invalid_list is not None: |
|
with open(self.invalid_list) as f: |
|
self.invalid_objects = json.load(f) |
|
self.invalid_objects = [os.path.basename(o).replace(".glb", "") for o in self.invalid_objects] |
|
else: |
|
self.invalid_objects = [] |
|
|
|
|
|
self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects)) |
|
self.all_objects = list(self.all_objects) |
|
|
|
if not validation: |
|
self.all_objects = self.all_objects[:-num_validation_samples] |
|
else: |
|
self.all_objects = self.all_objects[-num_validation_samples:] |
|
if num_samples is not None: |
|
self.all_objects = self.all_objects[:num_samples] |
|
|
|
print("loading ", len(self.all_objects), " objects in the dataset") |
|
|
|
if self.mix_color_normal: |
|
self.backup_data = self.__getitem_mix__(0, backup_scene) |
|
else: |
|
self.backup_data = self.__getitem_joint__(0, backup_scene) |
|
|
|
def __len__(self): |
|
return len(self.objects)*self.total_view |
|
|
|
def load_fixed_poses(self): |
|
poses = {} |
|
for face in self.view_types: |
|
RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face))) |
|
poses[face] = RT |
|
|
|
return poses |
|
|
|
def cartesian_to_spherical(self, xyz): |
|
ptsnew = np.hstack((xyz, np.zeros(xyz.shape))) |
|
xy = xyz[:,0]**2 + xyz[:,1]**2 |
|
z = np.sqrt(xy + xyz[:,2]**2) |
|
theta = np.arctan2(np.sqrt(xy), xyz[:,2]) |
|
|
|
azimuth = np.arctan2(xyz[:,1], xyz[:,0]) |
|
return np.array([theta, azimuth, z]) |
|
|
|
def get_T(self, target_RT, cond_RT): |
|
R, T = target_RT[:3, :3], target_RT[:, -1] |
|
T_target = -R.T @ T |
|
|
|
R, T = cond_RT[:3, :3], cond_RT[:, -1] |
|
T_cond = -R.T @ T |
|
|
|
theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :]) |
|
theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :]) |
|
|
|
d_theta = theta_target - theta_cond |
|
d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi) |
|
d_z = z_target - z_cond |
|
|
|
|
|
return d_theta, d_azimuth |
|
|
|
def get_bg_color(self): |
|
if self.bg_color == 'white': |
|
bg_color = np.array([1., 1., 1.], dtype=np.float32) |
|
elif self.bg_color == 'black': |
|
bg_color = np.array([0., 0., 0.], dtype=np.float32) |
|
elif self.bg_color == 'gray': |
|
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32) |
|
elif self.bg_color == 'random': |
|
bg_color = np.random.rand(3) |
|
elif self.bg_color == 'three_choices': |
|
white = np.array([1., 1., 1.], dtype=np.float32) |
|
black = np.array([0., 0., 0.], dtype=np.float32) |
|
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32) |
|
bg_color = random.choice([white, black, gray]) |
|
elif isinstance(self.bg_color, float): |
|
bg_color = np.array([self.bg_color] * 3, dtype=np.float32) |
|
else: |
|
raise NotImplementedError |
|
return bg_color |
|
|
|
|
|
|
|
def load_mask(self, img_path, return_type='np'): |
|
|
|
|
|
|
|
|
|
img = np.array(Image.open(img_path).resize(self.img_wh)) |
|
img = np.float32(img > 0) |
|
|
|
assert len(np.shape(img)) == 2 |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img |
|
|
|
def load_image(self, img_path, bg_color, alpha, return_type='np'): |
|
|
|
|
|
|
|
|
|
img = np.array(Image.open(img_path).resize(self.img_wh)) |
|
img = img.astype(np.float32) / 255. |
|
assert img.shape[-1] == 3 or img.shape[-1] == 4 |
|
|
|
if alpha is None and img.shape[-1] == 4: |
|
alpha = img[:, :, 3:] |
|
img = img[:, :, :3] |
|
|
|
if alpha.shape[-1] != 1: |
|
alpha = alpha[:, :, None] |
|
|
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img |
|
|
|
def load_depth(self, img_path, bg_color, alpha, return_type='np'): |
|
|
|
|
|
|
|
|
|
img = np.array(Image.open(img_path).resize(self.img_wh)) |
|
img = img.astype(np.float32) / 65535. |
|
|
|
img[img > 0.4] = 0 |
|
img = img / 0.4 |
|
|
|
assert img.ndim == 2 |
|
img = np.stack([img]*3, axis=-1) |
|
|
|
if alpha.shape[-1] != 1: |
|
alpha = alpha[:, :, None] |
|
|
|
|
|
|
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img |
|
|
|
def load_normal(self, img_path, bg_color, alpha, RT_w2c=None, RT_w2c_cond=None, return_type='np'): |
|
|
|
|
|
|
|
|
|
normal = np.array(Image.open(img_path).resize(self.img_wh)) |
|
|
|
assert normal.shape[-1] == 3 or normal.shape[-1] == 4 |
|
|
|
if alpha is None and normal.shape[-1] == 4: |
|
alpha = normal[:, :, 3:] / 255. |
|
normal = normal[:, :, :3] |
|
|
|
normal = trans_normal(img2normal(normal), RT_w2c, RT_w2c_cond) |
|
|
|
img = (normal*0.5 + 0.5).astype(np.float32) |
|
|
|
if alpha.shape[-1] != 1: |
|
alpha = alpha[:, :, None] |
|
|
|
img = img[...,:3] * alpha + bg_color * (1 - alpha) |
|
|
|
if return_type == "np": |
|
pass |
|
elif return_type == "pt": |
|
img = torch.from_numpy(img) |
|
else: |
|
raise NotImplementedError |
|
|
|
return img |
|
|
|
def __len__(self): |
|
return len(self.all_objects) |
|
|
|
def __getitem_mix__(self, index, debug_object=None): |
|
if debug_object is not None: |
|
object_name = debug_object |
|
set_idx = random.sample(range(0, self.groups_num), 1)[0] |
|
else: |
|
object_name = self.all_objects[index%len(self.all_objects)] |
|
set_idx = 0 |
|
|
|
if self.augment_data: |
|
cond_view = random.sample(self.view_types, k=1)[0] |
|
else: |
|
cond_view = 'front' |
|
|
|
|
|
|
|
if random.random() < 0.5: |
|
read_color, read_normal, read_depth = True, False, False |
|
else: |
|
read_color, read_normal, read_depth = False, True, False |
|
|
|
read_normal = read_normal & self.read_normal |
|
read_depth = read_depth & self.read_depth |
|
|
|
assert (read_color and (read_normal or read_depth)) is False |
|
|
|
view_types = self.view_types |
|
|
|
cond_w2c = self.fix_cam_poses[cond_view] |
|
|
|
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types] |
|
|
|
elevations = [] |
|
azimuths = [] |
|
|
|
|
|
bg_color = self.get_bg_color() |
|
|
|
if self.read_mask: |
|
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), return_type='np') |
|
else: |
|
cond_alpha = None |
|
img_tensors_in = [ |
|
self.load_image(os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1) |
|
] * self.num_views |
|
img_tensors_out = [] |
|
|
|
for view, tgt_w2c in zip(view_types, tgt_w2cs): |
|
img_path = os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix)) |
|
mask_path = os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, view, self.suffix)) |
|
normal_path = os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "normals_%03d_%s.%s" % (set_idx, view, self.suffix)) |
|
depth_path = os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "depth_%03d_%s.%s" % (set_idx, view, self.suffix)) |
|
if self.read_mask: |
|
alpha = self.load_mask(mask_path, return_type='np') |
|
else: |
|
alpha = None |
|
|
|
if read_color: |
|
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt") |
|
img_tensor = img_tensor.permute(2, 0, 1) |
|
img_tensors_out.append(img_tensor) |
|
|
|
if read_normal: |
|
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1) |
|
img_tensors_out.append(normal_tensor) |
|
if read_depth: |
|
depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1) |
|
img_tensors_out.append(depth_tensor) |
|
|
|
|
|
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c) |
|
elevations.append(elevation) |
|
azimuths.append(azimuth) |
|
|
|
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() |
|
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() |
|
|
|
|
|
elevations = torch.as_tensor(elevations).float().squeeze(1) |
|
azimuths = torch.as_tensor(azimuths).float().squeeze(1) |
|
elevations_cond = torch.as_tensor([0] * self.num_views).float() |
|
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) |
|
|
|
normal_class = torch.tensor([1, 0]).float() |
|
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) |
|
color_class = torch.tensor([0, 1]).float() |
|
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) |
|
if read_normal or read_depth: |
|
task_embeddings = normal_task_embeddings |
|
if read_color: |
|
task_embeddings = color_task_embeddings |
|
|
|
|
|
return { |
|
'elevations_cond': elevations_cond, |
|
'elevations_cond_deg': torch.rad2deg(elevations_cond), |
|
'elevations': elevations, |
|
'azimuths': azimuths, |
|
'elevations_deg': torch.rad2deg(elevations), |
|
'azimuths_deg': torch.rad2deg(azimuths), |
|
'imgs_in': img_tensors_in, |
|
'imgs_out': img_tensors_out, |
|
'camera_embeddings': camera_embeddings, |
|
'task_embeddings': task_embeddings |
|
} |
|
|
|
|
|
def __getitem_joint__(self, index, debug_object=None): |
|
if debug_object is not None: |
|
object_name = debug_object |
|
set_idx = random.sample(range(0, self.groups_num), 1)[0] |
|
else: |
|
object_name = self.all_objects[index%len(self.all_objects)] |
|
set_idx = 0 |
|
|
|
if self.augment_data: |
|
cond_view = random.sample(self.view_types, k=1)[0] |
|
else: |
|
cond_view = 'front' |
|
|
|
view_types = self.view_types |
|
|
|
cond_w2c = self.fix_cam_poses[cond_view] |
|
|
|
tgt_w2cs = [self.fix_cam_poses[view] for view in view_types] |
|
|
|
elevations = [] |
|
azimuths = [] |
|
|
|
|
|
bg_color = self.get_bg_color() |
|
|
|
if self.read_mask: |
|
cond_alpha = self.load_mask(os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), return_type='np') |
|
else: |
|
cond_alpha = None |
|
img_tensors_in = [ |
|
self.load_image(os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, cond_view, self.suffix)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1) |
|
] * self.num_views |
|
img_tensors_out = [] |
|
normal_tensors_out = [] |
|
for view, tgt_w2c in zip(view_types, tgt_w2cs): |
|
img_path = os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "rgb_%03d_%s.%s" % (set_idx, view, self.suffix)) |
|
mask_path = os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "mask_%03d_%s.%s" % (set_idx, view, self.suffix)) |
|
if self.read_mask: |
|
alpha = self.load_mask(mask_path, return_type='np') |
|
else: |
|
alpha = None |
|
|
|
if self.read_color: |
|
img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt") |
|
img_tensor = img_tensor.permute(2, 0, 1) |
|
img_tensors_out.append(img_tensor) |
|
|
|
if self.read_normal: |
|
normal_path = os.path.join(self.root_dir, object_name[:self.subscene_tag], object_name, "normals_%03d_%s.%s" % (set_idx, view, self.suffix)) |
|
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1) |
|
normal_tensors_out.append(normal_tensor) |
|
|
|
|
|
elevation, azimuth = self.get_T(tgt_w2c, cond_w2c) |
|
elevations.append(elevation) |
|
azimuths.append(azimuth) |
|
|
|
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() |
|
if self.read_color: |
|
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() |
|
if self.read_normal: |
|
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() |
|
|
|
elevations = torch.as_tensor(elevations).float().squeeze(1) |
|
azimuths = torch.as_tensor(azimuths).float().squeeze(1) |
|
elevations_cond = torch.as_tensor([0] * self.num_views).float() |
|
|
|
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) |
|
|
|
normal_class = torch.tensor([1, 0]).float() |
|
normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0) |
|
color_class = torch.tensor([0, 1]).float() |
|
color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0) |
|
|
|
return { |
|
'elevations_cond': elevations_cond, |
|
'elevations_cond_deg': torch.rad2deg(elevations_cond), |
|
'elevations': elevations, |
|
'azimuths': azimuths, |
|
'elevations_deg': torch.rad2deg(elevations), |
|
'azimuths_deg': torch.rad2deg(azimuths), |
|
'imgs_in': img_tensors_in, |
|
'imgs_out': img_tensors_out, |
|
'normals_out': normal_tensors_out, |
|
'camera_embeddings': camera_embeddings, |
|
'normal_task_embeddings': normal_task_embeddings, |
|
'color_task_embeddings': color_task_embeddings |
|
} |
|
|
|
def __getitem__(self, index): |
|
try: |
|
if self.mix_color_normal: |
|
data = self.__getitem_mix__(index) |
|
else: |
|
data = self.__getitem_joint__(index) |
|
return data |
|
except: |
|
print("load error ", self.all_objects[index%len(self.all_objects)] ) |
|
return self.backup_data |
|
|
|
|
|
class ConcatDataset(torch.utils.data.Dataset): |
|
def __init__(self, datasets, weights): |
|
self.datasets = datasets |
|
self.weights = weights |
|
self.num_datasets = len(datasets) |
|
|
|
def __getitem__(self, i): |
|
|
|
chosen = random.choices(self.datasets, self.weights, k=1)[0] |
|
return chosen[i] |
|
|
|
def __len__(self): |
|
return max(len(d) for d in self.datasets) |
|
|
|
if __name__ == "__main__": |
|
train_dataset = ObjaverseDataset( |
|
root_dir="/ghome/l5/xxlong/.objaverse/hf-objaverse-v1/renderings", |
|
size=(128, 128), |
|
ext="hdf5", |
|
default_trans=torch.zeros(3), |
|
return_paths=False, |
|
total_view=8, |
|
validation=False, |
|
object_list=None, |
|
views_mode='fourviews' |
|
) |
|
data0 = train_dataset[0] |
|
data1 = train_dataset[50] |
|
|
|
|