File size: 8,934 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from models.embedder import get_embedder


# This implementation is borrowed from IDR: https://github.com/lioryariv/idr
class SDFNetwork(nn.Module):
    def __init__(self,
                 d_in,
                 d_out,
                 d_hidden,
                 n_layers,
                 skip_in=(4,),
                 multires=0,
                 bias=0.5,
                 scale=1,
                 geometric_init=True,
                 weight_norm=True,
                 inside_outside=False):
        super(SDFNetwork, self).__init__()

        dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out]

        self.embed_fn_fine = None

        if multires > 0:
            embed_fn, input_ch = get_embedder(multires, input_dims=d_in)
            self.embed_fn_fine = embed_fn
            dims[0] = input_ch

        self.num_layers = len(dims)
        self.skip_in = skip_in
        self.scale = scale

        for l in range(0, self.num_layers - 1):
            if l + 1 in self.skip_in:
                out_dim = dims[l + 1] - dims[0]
            else:
                out_dim = dims[l + 1]

            lin = nn.Linear(dims[l], out_dim)

            if geometric_init:
                if l == self.num_layers - 2:
                    if not inside_outside:
                        torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.pi) / np.sqrt(dims[l]), std=0.0001)
                        torch.nn.init.constant_(lin.bias, -bias)
                    else:
                        torch.nn.init.normal_(lin.weight, mean=-np.sqrt(np.pi) / np.sqrt(dims[l]), std=0.0001)
                        torch.nn.init.constant_(lin.bias, bias)
                elif multires > 0 and l == 0:
                    torch.nn.init.constant_(lin.bias, 0.0)
                    torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
                    torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2) / np.sqrt(out_dim))
                elif multires > 0 and l in self.skip_in:
                    torch.nn.init.constant_(lin.bias, 0.0)
                    torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
                    torch.nn.init.constant_(lin.weight[:, -(dims[0] - 3):], 0.0)
                else:
                    torch.nn.init.constant_(lin.bias, 0.0)
                    torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))

            if weight_norm:
                lin = nn.utils.weight_norm(lin)

            setattr(self, "lin" + str(l), lin)

        self.activation = nn.Softplus(beta=100)

    def forward(self, inputs):
        inputs = inputs * self.scale
        if self.embed_fn_fine is not None:
            inputs = self.embed_fn_fine(inputs)

        x = inputs
        for l in range(0, self.num_layers - 1):
            lin = getattr(self, "lin" + str(l))

            if l in self.skip_in:
                x = torch.cat([x, inputs], 1) / np.sqrt(2)

            x = lin(x)

            if l < self.num_layers - 2:
                x = self.activation(x)
        return torch.cat([x[:, :1] / self.scale, x[:, 1:]], dim=-1)

    def sdf(self, x):
        return self.forward(x)[:, :1]

    def sdf_hidden_appearance(self, x):
        return self.forward(x)

    def gradient(self, x):
        x.requires_grad_(True)
        with torch.enable_grad():
            y = self.sdf(x)
        d_output = torch.ones_like(y, requires_grad=False, device=y.device)
        gradients = torch.autograd.grad(
            outputs=y,
            inputs=x,
            grad_outputs=d_output,
            create_graph=True,
            retain_graph=True,
            only_inputs=True)[0]
        return gradients.unsqueeze(1)


# This implementation is borrowed from IDR: https://github.com/lioryariv/idr
class RenderingNetwork(nn.Module):
    def __init__(self,
                 d_feature,
                 mode,
                 d_in,
                 d_out,
                 d_hidden,
                 n_layers,
                 weight_norm=True,
                 multires_view=0,
                 squeeze_out=True):
        super().__init__()

        self.mode = mode
        self.squeeze_out = squeeze_out
        dims = [d_in + d_feature] + [d_hidden for _ in range(n_layers)] + [d_out]

        self.embedview_fn = None
        if multires_view > 0:
            embedview_fn, input_ch = get_embedder(multires_view)
            self.embedview_fn = embedview_fn
            dims[0] += (input_ch - 3)

        self.num_layers = len(dims)

        for l in range(0, self.num_layers - 1):
            out_dim = dims[l + 1]
            lin = nn.Linear(dims[l], out_dim)

            if weight_norm:
                lin = nn.utils.weight_norm(lin)

            setattr(self, "lin" + str(l), lin)

        self.relu = nn.ReLU()

    def forward(self, points, normals, view_dirs, feature_vectors):
        if self.embedview_fn is not None:
            view_dirs = self.embedview_fn(view_dirs)

        rendering_input = None

        if self.mode == 'idr':
            rendering_input = torch.cat([points, view_dirs, normals, feature_vectors], dim=-1)
        elif self.mode == 'no_view_dir':
            rendering_input = torch.cat([points, normals, feature_vectors], dim=-1)
        elif self.mode == 'no_normal':
            rendering_input = torch.cat([points, view_dirs, feature_vectors], dim=-1)

        x = rendering_input

        for l in range(0, self.num_layers - 1):
            lin = getattr(self, "lin" + str(l))

            x = lin(x)

            if l < self.num_layers - 2:
                x = self.relu(x)

        if self.squeeze_out:
            x = torch.sigmoid(x)
        return x


# This implementation is borrowed from nerf-pytorch: https://github.com/yenchenlin/nerf-pytorch
class NeRF(nn.Module):
    def __init__(self,
                 D=8,
                 W=256,
                 d_in=3,
                 d_in_view=3,
                 multires=0,
                 multires_view=0,
                 output_ch=4,
                 skips=[4],
                 use_viewdirs=False):
        super(NeRF, self).__init__()
        self.D = D
        self.W = W
        self.d_in = d_in
        self.d_in_view = d_in_view
        self.input_ch = 3
        self.input_ch_view = 3
        self.embed_fn = None
        self.embed_fn_view = None

        if multires > 0:
            embed_fn, input_ch = get_embedder(multires, input_dims=d_in)
            self.embed_fn = embed_fn
            self.input_ch = input_ch

        if multires_view > 0:
            embed_fn_view, input_ch_view = get_embedder(multires_view, input_dims=d_in_view)
            self.embed_fn_view = embed_fn_view
            self.input_ch_view = input_ch_view

        self.skips = skips
        self.use_viewdirs = use_viewdirs

        self.pts_linears = nn.ModuleList(
            [nn.Linear(self.input_ch, W)] +
            [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + self.input_ch, W) for i in range(D - 1)])

        ### Implementation according to the official code release
        ### (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
        self.views_linears = nn.ModuleList([nn.Linear(self.input_ch_view + W, W // 2)])

        ### Implementation according to the paper
        # self.views_linears = nn.ModuleList(
        #     [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])

        if use_viewdirs:
            self.feature_linear = nn.Linear(W, W)
            self.alpha_linear = nn.Linear(W, 1)
            self.rgb_linear = nn.Linear(W // 2, 3)
        else:
            self.output_linear = nn.Linear(W, output_ch)

    def forward(self, input_pts, input_views):
        if self.embed_fn is not None:
            input_pts = self.embed_fn(input_pts)
        if self.embed_fn_view is not None:
            input_views = self.embed_fn_view(input_views)

        h = input_pts
        for i, l in enumerate(self.pts_linears):
            h = self.pts_linears[i](h)
            h = F.relu(h)
            if i in self.skips:
                h = torch.cat([input_pts, h], -1)

        if self.use_viewdirs:
            alpha = self.alpha_linear(h)
            feature = self.feature_linear(h)
            h = torch.cat([feature, input_views], -1)

            for i, l in enumerate(self.views_linears):
                h = self.views_linears[i](h)
                h = F.relu(h)

            rgb = self.rgb_linear(h)
            return alpha, rgb
        else:
            assert False


class SingleVarianceNetwork(nn.Module):
    def __init__(self, init_val):
        super(SingleVarianceNetwork, self).__init__()
        self.register_parameter('variance', nn.Parameter(torch.tensor(init_val)))

    def forward(self, x):
        return torch.ones([len(x), 1]).to(x.device) * torch.exp(self.variance * 10.0)