File size: 25,546 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import os
import time
import logging
import argparse
import numpy as np
import cv2 as cv
import trimesh
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from shutil import copyfile
from icecream import ic
from tqdm import tqdm
from pyhocon import ConfigFactory
from models.dataset_mvdiff import Dataset
from models.fields import RenderingNetwork, SDFNetwork, SingleVarianceNetwork, NeRF
from models.renderer import NeuSRenderer
import pdb
import math
def ranking_loss(error, penalize_ratio=0.7, type='mean'):
error, indices = torch.sort(error)
# only sum relatively small errors
s_error = torch.index_select(error, 0, index=indices[: int(penalize_ratio * indices.shape[0])])
if type == 'mean':
return torch.mean(s_error)
elif type == 'sum':
return torch.sum(s_error)
class Runner:
def __init__(self, conf_path, mode='train', case='CASE_NAME', is_continue=False, data_dir=None):
self.device = torch.device('cuda')
# Configuration
self.conf_path = conf_path
f = open(self.conf_path)
conf_text = f.read()
conf_text = conf_text.replace('CASE_NAME', case)
f.close()
self.conf = ConfigFactory.parse_string(conf_text)
self.conf['dataset']['data_dir'] = data_dir
self.conf['dataset.data_dir'] = self.conf['dataset.data_dir'].replace('CASE_NAME', case)
self.base_exp_dir = self.conf['general.base_exp_dir']
os.makedirs(self.base_exp_dir, exist_ok=True)
self.dataset = Dataset(self.conf['dataset'])
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=self.conf['train']['batch_size'],
shuffle=True,
num_workers=64,
)
self.iter_step = 1
# Training parameters
self.end_iter = self.conf.get_int('train.end_iter')
self.save_freq = self.conf.get_int('train.save_freq')
self.report_freq = self.conf.get_int('train.report_freq')
self.val_freq = self.conf.get_int('train.val_freq')
self.val_mesh_freq = self.conf.get_int('train.val_mesh_freq')
self.batch_size = self.conf.get_int('train.batch_size')
self.validate_resolution_level = self.conf.get_int('train.validate_resolution_level')
self.learning_rate = self.conf.get_float('train.learning_rate')
self.learning_rate_alpha = self.conf.get_float('train.learning_rate_alpha')
self.use_white_bkgd = self.conf.get_bool('train.use_white_bkgd')
self.warm_up_end = self.conf.get_float('train.warm_up_end', default=0.0)
self.anneal_end = self.conf.get_float('train.anneal_end', default=0.0)
# Weights
self.color_weight = self.conf.get_float('train.color_weight')
self.igr_weight = self.conf.get_float('train.igr_weight')
self.mask_weight = self.conf.get_float('train.mask_weight')
self.normal_weight = self.conf.get_float('train.normal_weight')
self.sparse_weight = self.conf.get_float('train.sparse_weight')
self.is_continue = is_continue
self.mode = mode
self.model_list = []
self.writer = None
# Networks
params_to_train_slow = []
self.nerf_outside = NeRF(**self.conf['model.nerf']).to(self.device)
self.sdf_network = SDFNetwork(**self.conf['model.sdf_network']).to(self.device)
self.deviation_network = SingleVarianceNetwork(**self.conf['model.variance_network']).to(self.device)
self.color_network = RenderingNetwork(**self.conf['model.rendering_network']).to(self.device)
# params_to_train += list(self.nerf_outside.parameters())
params_to_train_slow += list(self.sdf_network.parameters())
params_to_train_slow += list(self.deviation_network.parameters())
# params_to_train += list(self.color_network.parameters())
self.optimizer = torch.optim.Adam(
[{'params': params_to_train_slow}, {'params': self.color_network.parameters(), 'lr': self.learning_rate * 2}], lr=self.learning_rate
)
self.renderer = NeuSRenderer(
self.nerf_outside, self.sdf_network, self.deviation_network, self.color_network, **self.conf['model.neus_renderer']
)
# Load checkpoint
latest_model_name = None
if is_continue:
model_list_raw = os.listdir(os.path.join(self.base_exp_dir, 'checkpoints'))
model_list = []
for model_name in model_list_raw:
if model_name[-3:] == 'pth' and int(model_name[5:-4]) <= self.end_iter:
model_list.append(model_name)
model_list.sort()
latest_model_name = model_list[-1]
if latest_model_name is not None:
logging.info('Find checkpoint: {}'.format(latest_model_name))
self.load_checkpoint(latest_model_name)
# Backup codes and configs for debug
if self.mode[:5] == 'train':
self.file_backup()
def train(self):
self.writer = SummaryWriter(log_dir=os.path.join(self.base_exp_dir, 'logs'))
self.update_learning_rate()
res_step = self.end_iter - self.iter_step
image_perm = self.get_image_perm()
num_train_epochs = math.ceil(res_step / len(self.dataloader))
print("training ", num_train_epochs, " epoches")
for epoch in range(num_train_epochs):
# for iter_i in tqdm(range(res_step)):
print("epoch ", epoch)
for iter_i, data in enumerate(self.dataloader):
# img_idx = image_perm[self.iter_step % len(image_perm)]
# data = self.dataset.gen_random_rays_at(img_idx, self.batch_size)
data = data.cuda()
rays_o, rays_d, true_rgb, mask, true_normal, cosines = (
data[:, :3],
data[:, 3:6],
data[:, 6:9],
data[:, 9:10],
data[:, 10:13],
data[:, 13:],
)
# near, far = self.dataset.near_far_from_sphere(rays_o, rays_d)
near, far = self.dataset.get_near_far()
background_rgb = None
if self.use_white_bkgd:
background_rgb = torch.ones([1, 3])
if self.mask_weight > 0.0:
mask = (mask > 0.5).float()
else:
mask = torch.ones_like(mask)
cosines[cosines > -0.1] = 0
mask = ((mask > 0) & (cosines < -0.1)).to(torch.float32)
mask_sum = mask.sum() + 1e-5
render_out = self.renderer.render(
rays_o, rays_d, near, far, background_rgb=background_rgb, cos_anneal_ratio=self.get_cos_anneal_ratio()
)
color_fine = render_out['color_fine']
s_val = render_out['s_val']
cdf_fine = render_out['cdf_fine']
gradient_error = render_out['gradient_error']
weight_max = render_out['weight_max']
weight_sum = render_out['weight_sum']
# Loss
# color_error = (color_fine - true_rgb) * mask
# color_fine_loss = F.l1_loss(color_error, torch.zeros_like(color_error), reduction='sum') / mask_sum
color_errors = (color_fine - true_rgb).abs().sum(dim=1)
color_fine_loss = ranking_loss(color_errors[mask[:, 0] > 0])
psnr = 20.0 * torch.log10(1.0 / (((color_fine - true_rgb) ** 2 * mask).sum() / (mask_sum * 3.0)).sqrt())
eikonal_loss = gradient_error
# pdb.set_trace()
mask_errors = F.binary_cross_entropy(weight_sum.clip(1e-3, 1.0 - 1e-3), mask, reduction='none')
mask_loss = ranking_loss(mask_errors[:, 0], penalize_ratio=0.8)
def feasible(key):
return (key in render_out) and (render_out[key] is not None)
# calculate normal loss
n_samples = self.renderer.n_samples + self.renderer.n_importance
normals = render_out['gradients'] * render_out['weights'][:, :n_samples, None]
if feasible('inside_sphere'):
normals = normals * render_out['inside_sphere'][..., None]
normals = normals.sum(dim=1)
# pdb.set_trace()
normal_errors = 1 - F.cosine_similarity(normals, true_normal, dim=1)
# normal_error = normal_error * mask[:, 0]
# normal_loss = F.l1_loss(normal_error, torch.zeros_like(normal_error), reduction='sum') / mask_sum
normal_errors = normal_errors * torch.exp(cosines.abs()[:, 0]) / torch.exp(cosines.abs()).sum()
normal_loss = ranking_loss(normal_errors[mask[:, 0] > 0], penalize_ratio=0.9, type='sum')
sparse_loss = render_out['sparse_loss']
loss = (
color_fine_loss * self.color_weight
+ eikonal_loss * self.igr_weight
+ sparse_loss * self.sparse_weight
+ mask_loss * self.mask_weight
+ normal_loss * self.normal_weight
)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.writer.add_scalar('Loss/loss', loss, self.iter_step)
self.writer.add_scalar('Loss/color_loss', color_fine_loss, self.iter_step)
self.writer.add_scalar('Loss/eikonal_loss', eikonal_loss, self.iter_step)
self.writer.add_scalar('Statistics/s_val', s_val.mean(), self.iter_step)
self.writer.add_scalar('Statistics/cdf', (cdf_fine[:, :1] * mask).sum() / mask_sum, self.iter_step)
self.writer.add_scalar('Statistics/weight_max', (weight_max * mask).sum() / mask_sum, self.iter_step)
self.writer.add_scalar('Statistics/psnr', psnr, self.iter_step)
if self.iter_step % self.report_freq == 0:
print(self.base_exp_dir)
print(
'iter:{:8>d} loss = {:4>f} color_ls = {:4>f} eik_ls = {:4>f} normal_ls = {:4>f} mask_ls = {:4>f} sparse_ls = {:4>f} lr={:5>f}'.format(
self.iter_step,
loss,
color_fine_loss,
eikonal_loss,
normal_loss,
mask_loss,
sparse_loss,
self.optimizer.param_groups[0]['lr'],
)
)
print('iter:{:8>d} s_val = {:4>f}'.format(self.iter_step, s_val.mean()))
if self.iter_step % self.val_mesh_freq == 0:
self.validate_mesh(resolution=256)
self.update_learning_rate()
self.iter_step += 1
if self.iter_step % self.val_freq == 0:
self.validate_image(idx=0)
self.validate_image(idx=1)
self.validate_image(idx=2)
self.validate_image(idx=3)
if self.iter_step % self.save_freq == 0:
self.save_checkpoint()
if self.iter_step % len(image_perm) == 0:
image_perm = self.get_image_perm()
def get_image_perm(self):
return torch.randperm(self.dataset.n_images)
def get_cos_anneal_ratio(self):
if self.anneal_end == 0.0:
return 1.0
else:
return np.min([1.0, self.iter_step / self.anneal_end])
def update_learning_rate(self):
if self.iter_step < self.warm_up_end:
learning_factor = self.iter_step / self.warm_up_end
else:
alpha = self.learning_rate_alpha
progress = (self.iter_step - self.warm_up_end) / (self.end_iter - self.warm_up_end)
learning_factor = (np.cos(np.pi * progress) + 1.0) * 0.5 * (1 - alpha) + alpha
for g in self.optimizer.param_groups:
g['lr'] = self.learning_rate * learning_factor
def file_backup(self):
dir_lis = self.conf['general.recording']
os.makedirs(os.path.join(self.base_exp_dir, 'recording'), exist_ok=True)
for dir_name in dir_lis:
cur_dir = os.path.join(self.base_exp_dir, 'recording', dir_name)
os.makedirs(cur_dir, exist_ok=True)
files = os.listdir(dir_name)
for f_name in files:
if f_name[-3:] == '.py':
copyfile(os.path.join(dir_name, f_name), os.path.join(cur_dir, f_name))
copyfile(self.conf_path, os.path.join(self.base_exp_dir, 'recording', 'config.conf'))
def load_checkpoint(self, checkpoint_name):
checkpoint = torch.load(os.path.join(self.base_exp_dir, 'checkpoints', checkpoint_name), map_location=self.device)
self.nerf_outside.load_state_dict(checkpoint['nerf'])
self.sdf_network.load_state_dict(checkpoint['sdf_network_fine'])
self.deviation_network.load_state_dict(checkpoint['variance_network_fine'])
self.color_network.load_state_dict(checkpoint['color_network_fine'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.iter_step = checkpoint['iter_step']
logging.info('End')
def save_checkpoint(self):
checkpoint = {
'nerf': self.nerf_outside.state_dict(),
'sdf_network_fine': self.sdf_network.state_dict(),
'variance_network_fine': self.deviation_network.state_dict(),
'color_network_fine': self.color_network.state_dict(),
'optimizer': self.optimizer.state_dict(),
'iter_step': self.iter_step,
}
os.makedirs(os.path.join(self.base_exp_dir, 'checkpoints'), exist_ok=True)
torch.save(checkpoint, os.path.join(self.base_exp_dir, 'checkpoints', 'ckpt_{:0>6d}.pth'.format(self.iter_step)))
def validate_image(self, idx=-1, resolution_level=-1):
if idx < 0:
idx = np.random.randint(self.dataset.n_images)
print('Validate: iter: {}, camera: {}'.format(self.iter_step, idx))
if resolution_level < 0:
resolution_level = self.validate_resolution_level
rays_o, rays_d = self.dataset.gen_rays_at(idx, resolution_level=resolution_level)
H, W, _ = rays_o.shape
rays_o = rays_o.reshape(-1, 3).split(self.batch_size)
rays_d = rays_d.reshape(-1, 3).split(self.batch_size)
out_rgb_fine = []
out_normal_fine = []
out_mask = []
for rays_o_batch, rays_d_batch in zip(rays_o, rays_d):
# near, far = self.dataset.near_far_from_sphere(rays_o_batch, rays_d_batch)
near, far = self.dataset.get_near_far()
background_rgb = torch.ones([1, 3]) if self.use_white_bkgd else None
render_out = self.renderer.render(
rays_o_batch, rays_d_batch, near, far, cos_anneal_ratio=self.get_cos_anneal_ratio(), background_rgb=background_rgb
)
def feasible(key):
return (key in render_out) and (render_out[key] is not None)
if feasible('color_fine'):
out_rgb_fine.append(render_out['color_fine'].detach().cpu().numpy())
if feasible('gradients') and feasible('weights'):
n_samples = self.renderer.n_samples + self.renderer.n_importance
normals = render_out['gradients'] * render_out['weights'][:, :n_samples, None]
if feasible('inside_sphere'):
normals = normals * render_out['inside_sphere'][..., None]
normals = normals.sum(dim=1).detach().cpu().numpy()
out_normal_fine.append(normals)
if feasible('weight_sum'):
out_mask.append(render_out['weight_sum'].detach().clip(0, 1).cpu().numpy())
del render_out
img_fine = None
if len(out_rgb_fine) > 0:
img_fine = (np.concatenate(out_rgb_fine, axis=0).reshape([H, W, 3, -1]) * 256).clip(0, 255)
mask_map = None
if len(out_mask) > 0:
mask_map = (np.concatenate(out_mask, axis=0).reshape([H, W, -1]) * 256).clip(0, 255)
normal_img = None
if len(out_normal_fine) > 0:
normal_img = np.concatenate(out_normal_fine, axis=0)
rot = np.linalg.inv(self.dataset.pose_all[idx, :3, :3].detach().cpu().numpy())
normal_img = (np.matmul(rot[None, :, :], normal_img[:, :, None]).reshape([H, W, 3, -1]) * 128 + 128).clip(0, 255)
os.makedirs(os.path.join(self.base_exp_dir, 'validations_fine'), exist_ok=True)
os.makedirs(os.path.join(self.base_exp_dir, 'normals'), exist_ok=True)
for i in range(img_fine.shape[-1]):
if len(out_rgb_fine) > 0:
cv.imwrite(
os.path.join(self.base_exp_dir, 'validations_fine', '{:0>8d}_{}_{}.png'.format(self.iter_step, i, idx)),
np.concatenate(
[
img_fine[..., i],
self.dataset.image_at(idx, resolution_level=resolution_level),
self.dataset.mask_at(idx, resolution_level=resolution_level),
]
),
)
if len(out_normal_fine) > 0:
cv.imwrite(
os.path.join(self.base_exp_dir, 'normals', '{:0>8d}_{}_{}.png'.format(self.iter_step, i, idx)),
np.concatenate([normal_img[..., i], self.dataset.normal_cam_at(idx, resolution_level=resolution_level)])[:, :, ::-1],
)
if len(out_mask) > 0:
cv.imwrite(os.path.join(self.base_exp_dir, 'normals', '{:0>8d}_{}_{}_mask.png'.format(self.iter_step, i, idx)), mask_map[..., i])
def save_maps(self, idx, img_idx, resolution_level=1):
view_types = ['front', 'back', 'left', 'right']
print('Validate: iter: {}, camera: {}'.format(self.iter_step, idx))
rays_o, rays_d = self.dataset.gen_rays_at(idx, resolution_level=resolution_level)
H, W, _ = rays_o.shape
rays_o = rays_o.reshape(-1, 3).split(self.batch_size)
rays_d = rays_d.reshape(-1, 3).split(self.batch_size)
out_rgb_fine = []
out_normal_fine = []
out_mask = []
for rays_o_batch, rays_d_batch in zip(rays_o, rays_d):
# near, far = self.dataset.near_far_from_sphere(rays_o_batch, rays_d_batch)
near, far = self.dataset.get_near_far()
background_rgb = torch.ones([1, 3]) if self.use_white_bkgd else None
render_out = self.renderer.render(
rays_o_batch, rays_d_batch, near, far, cos_anneal_ratio=self.get_cos_anneal_ratio(), background_rgb=background_rgb
)
def feasible(key):
return (key in render_out) and (render_out[key] is not None)
if feasible('color_fine'):
out_rgb_fine.append(render_out['color_fine'].detach().cpu().numpy())
if feasible('gradients') and feasible('weights'):
n_samples = self.renderer.n_samples + self.renderer.n_importance
normals = render_out['gradients'] * render_out['weights'][:, :n_samples, None]
if feasible('inside_sphere'):
normals = normals * render_out['inside_sphere'][..., None]
normals = normals.sum(dim=1).detach().cpu().numpy()
out_normal_fine.append(normals)
if feasible('weight_sum'):
out_mask.append(render_out['weight_sum'].detach().clip(0, 1).cpu().numpy())
del render_out
img_fine = None
if len(out_rgb_fine) > 0:
img_fine = (np.concatenate(out_rgb_fine, axis=0).reshape([H, W, 3]) * 256).clip(0, 255)
mask_map = None
if len(out_mask) > 0:
mask_map = (np.concatenate(out_mask, axis=0).reshape([H, W, 1]) * 256).clip(0, 255)
normal_img = None
if len(out_normal_fine) > 0:
normal_img = np.concatenate(out_normal_fine, axis=0)
# rot = np.linalg.inv(self.dataset.pose_all[idx, :3, :3].detach().cpu().numpy())
world_normal_img = (normal_img.reshape([H, W, 3]) * 128 + 128).clip(0, 255)
os.makedirs(os.path.join(self.base_exp_dir, 'coarse_maps'), exist_ok=True)
img_rgba = np.concatenate([img_fine[:, :, ::-1], mask_map], axis=-1)
normal_rgba = np.concatenate([world_normal_img[:, :, ::-1], mask_map], axis=-1)
cv.imwrite(os.path.join(self.base_exp_dir, 'coarse_maps', "normals_mlp_%03d_%s.png" % (img_idx, view_types[idx])), img_rgba)
cv.imwrite(os.path.join(self.base_exp_dir, 'coarse_maps', "normals_grad_%03d_%s.png" % (img_idx, view_types[idx])), normal_rgba)
def render_novel_image(self, idx_0, idx_1, ratio, resolution_level):
"""
Interpolate view between two cameras.
"""
rays_o, rays_d = self.dataset.gen_rays_between(idx_0, idx_1, ratio, resolution_level=resolution_level)
H, W, _ = rays_o.shape
rays_o = rays_o.reshape(-1, 3).split(self.batch_size)
rays_d = rays_d.reshape(-1, 3).split(self.batch_size)
out_rgb_fine = []
for rays_o_batch, rays_d_batch in zip(rays_o, rays_d):
# near, far = self.dataset.near_far_from_sphere(rays_o_batch, rays_d_batch)
near, far = self.dataset.get_near_far()
background_rgb = torch.ones([1, 3]) if self.use_white_bkgd else None
render_out = self.renderer.render(
rays_o_batch, rays_d_batch, near, far, cos_anneal_ratio=self.get_cos_anneal_ratio(), background_rgb=background_rgb
)
out_rgb_fine.append(render_out['color_fine'].detach().cpu().numpy())
del render_out
img_fine = (np.concatenate(out_rgb_fine, axis=0).reshape([H, W, 3]) * 256).clip(0, 255).astype(np.uint8)
return img_fine
def validate_mesh(self, world_space=False, resolution=64, threshold=0.0):
bound_min = torch.tensor(self.dataset.object_bbox_min, dtype=torch.float32)
bound_max = torch.tensor(self.dataset.object_bbox_max, dtype=torch.float32)
vertices, triangles, vertex_colors = self.renderer.extract_geometry(bound_min, bound_max, resolution=resolution, threshold=threshold)
os.makedirs(os.path.join(self.base_exp_dir, 'meshes'), exist_ok=True)
if world_space:
vertices = vertices * self.dataset.scale_mats_np[0][0, 0] + self.dataset.scale_mats_np[0][:3, 3][None]
mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=vertex_colors)
# mesh.export(os.path.join(self.base_exp_dir, 'meshes', '{:0>8d}.ply'.format(self.iter_step)))
# export as glb
mesh.export(os.path.join(self.base_exp_dir, 'meshes', 'tmp.glb'))
logging.info('End')
def interpolate_view(self, img_idx_0, img_idx_1):
images = []
n_frames = 60
for i in range(n_frames):
print(i)
images.append(self.render_novel_image(img_idx_0, img_idx_1, np.sin(((i / n_frames) - 0.5) * np.pi) * 0.5 + 0.5, resolution_level=4))
for i in range(n_frames):
images.append(images[n_frames - i - 1])
fourcc = cv.VideoWriter_fourcc(*'mp4v')
video_dir = os.path.join(self.base_exp_dir, 'render')
os.makedirs(video_dir, exist_ok=True)
h, w, _ = images[0].shape
writer = cv.VideoWriter(os.path.join(video_dir, '{:0>8d}_{}_{}.mp4'.format(self.iter_step, img_idx_0, img_idx_1)), fourcc, 30, (w, h))
for image in images:
writer.write(image)
writer.release()
if __name__ == '__main__':
print('Hello Wooden')
torch.set_default_tensor_type('torch.FloatTensor')
FORMAT = "[%(filename)s:%(lineno)s - %(funcName)20s() ] %(message)s"
logging.basicConfig(level=logging.DEBUG, format=FORMAT)
parser = argparse.ArgumentParser()
parser.add_argument('--conf', type=str, default='./confs/base.conf')
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--mcube_threshold', type=float, default=0.0)
parser.add_argument('--is_continue', default=False, action="store_true")
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--case', type=str, default='')
parser.add_argument('--data_dir', type=str, default='')
args = parser.parse_args()
torch.cuda.set_device(args.gpu)
runner = Runner(args.conf, args.mode, args.case, args.is_continue, args.data_dir)
if args.mode == 'train':
runner.train()
runner.validate_mesh(world_space=False, resolution=256, threshold=args.mcube_threshold)
elif args.mode == 'save_maps':
for i in range(4):
runner.save_maps(idx=i, img_idx=runner.dataset.object_viewidx)
elif args.mode == 'validate_mesh':
runner.validate_mesh(world_space=False, resolution=512, threshold=args.mcube_threshold)
elif args.mode.startswith('interpolate'): # Interpolate views given two image indices
_, img_idx_0, img_idx_1 = args.mode.split('_')
img_idx_0 = int(img_idx_0)
img_idx_1 = int(img_idx_1)
runner.interpolate_view(img_idx_0, img_idx_1)
|