Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
import pathlib | |
import pickle | |
import sys | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
current_dir = pathlib.Path(__file__).parent | |
submodule_dir = current_dir / 'stylegan3' | |
sys.path.insert(0, submodule_dir.as_posix()) | |
HF_TOKEN = os.environ['HF_TOKEN'] | |
class Model: | |
MODEL_NAMES = [ | |
'dogs_1024', | |
'elephants_512', | |
'horses_256', | |
'bicycles_256', | |
'lions_512', | |
'giraffes_512', | |
'parrots_512', | |
] | |
def __init__(self, device: str | torch.device): | |
self.device = torch.device(device) | |
self._download_all_models() | |
self._download_all_cluster_centers() | |
self.model_name = self.MODEL_NAMES[0] | |
self.model = self._load_model(self.model_name) | |
self.cluster_centers = self._load_cluster_centers(self.model_name) | |
def _load_model(self, model_name: str) -> nn.Module: | |
path = hf_hub_download('hysts/Self-Distilled-StyleGAN', | |
f'models/{model_name}_pytorch.pkl', | |
use_auth_token=HF_TOKEN) | |
with open(path, 'rb') as f: | |
model = pickle.load(f)['G_ema'] | |
model.eval() | |
model.to(self.device) | |
return model | |
def _load_cluster_centers(self, model_name: str) -> torch.Tensor: | |
path = hf_hub_download('hysts/Self-Distilled-StyleGAN', | |
f'cluster_centers/{model_name}.npy', | |
use_auth_token=HF_TOKEN) | |
centers = np.load(path) | |
centers = torch.from_numpy(centers).float().to(self.device) | |
return centers | |
def set_model(self, model_name: str) -> None: | |
if model_name == self.model_name: | |
return | |
self.model_name = model_name | |
self.model = self._load_model(model_name) | |
self.cluster_centers = self._load_cluster_centers(model_name) | |
def _download_all_models(self): | |
for name in self.MODEL_NAMES: | |
self._load_model(name) | |
def _download_all_cluster_centers(self): | |
for name in self.MODEL_NAMES: | |
self._load_cluster_centers(name) | |
def generate_z(self, seed: int) -> torch.Tensor: | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
return torch.from_numpy( | |
np.random.RandomState(seed).randn(1, self.model.z_dim)).float().to( | |
self.device) | |
def compute_w(self, z: torch.Tensor) -> torch.Tensor: | |
label = torch.zeros((1, self.model.c_dim), device=self.device) | |
w = self.model.mapping(z, label) | |
return w | |
def find_nearest_cluster_center(self, w: torch.Tensor) -> int: | |
# Here, Euclidean distance is used instead of LPIPS distance | |
dist2 = ((self.cluster_centers - w)**2).sum(dim=1) | |
return torch.argmin(dist2).item() | |
def truncate_w(w_center: torch.Tensor, w: torch.Tensor, | |
psi: float) -> torch.Tensor: | |
if psi == 1: | |
return w | |
return w_center.lerp(w, psi) | |
def synthesize(self, w: torch.Tensor) -> torch.Tensor: | |
return self.model.synthesis(w) | |
def postprocess(self, tensor: torch.Tensor) -> np.ndarray: | |
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to( | |
torch.uint8) | |
return tensor.cpu().numpy() | |
def generate_image(self, seed: int, truncation_psi: float, | |
multimodal_truncation: bool) -> np.ndarray: | |
z = self.generate_z(seed) | |
w = self.compute_w(z) | |
if multimodal_truncation: | |
cluster_index = self.find_nearest_cluster_center(w[:, 0]) | |
w0 = self.cluster_centers[cluster_index] | |
else: | |
w0 = self.model.mapping.w_avg | |
new_w = self.truncate_w(w0, w, truncation_psi) | |
out = self.synthesize(new_w) | |
out = self.postprocess(out) | |
return out[0] | |
def set_model_and_generate_image( | |
self, model_name: str, seed: int, truncation_psi: float, | |
multimodal_truncation: bool) -> np.ndarray: | |
self.set_model(model_name) | |
return self.generate_image(seed, truncation_psi, multimodal_truncation) | |