# Author: Ming Yang # Date: 2023/01/20 # Description: Traverse the zip file but not decompress it. # Suppose the zip file contains yolo format annotation files. # / # ├── classes.txt # ├── images # │ ├── 1.jpg # │ ├── 2.jpg # │ └── ... # └── labels # ├── 1.txt # ├── 2.txt # └── ... import io import json from datetime import datetime from typing import Optional from zipfile import ZipFile from PIL import Image from pycocotools import coco from pycocotools.coco import COCO yolo_label = { 'class': str, 'class_id': int, 'x_center': float, 'y_center': float, 'width': float, 'height': float } yolo_image = { 'image_name': str, 'image': Image, 'labels': list[yolo_label] } coco_annotation = { "id": int, "image_id": int, # the id of the image that the annotation belongs to "category_id": int, # the id of the category that the annotation belongs to # "segmentation": RLE or [polygon], "area": float, "bbox": [float, float, float, float], # [x,y,width,height] "iscrowd": bool, # 0 or 1, } coco_category = { "id": int, "name": str, "supercategory": Optional[str], } coco_image = { "id": int, "width": int, "height": int, "file_name": str, "date_captured": Optional[datetime], } coco_dataset = { "images": list[coco_image], # list of all images in the dataset "annotations": list[coco_annotation], # list of all annotations in the dataset "categories": list[coco_category] # list of all categories } class YoloImage: def __init__(self, image_name: str, image: Image, labels: list[yolo_label]): self.image_name = image_name self.image = image self.labels = labels def __repr__(self): return f'YoloImage(image_name={self.image_name}, image={self.image}, labels={self.labels})' def to_coco_image(self, id: int) -> coco_image: return { "id": id, "width": self.image.width, "height": self.image.height, "file_name": self.image_name, } def to_coco_annotations(self, image_id: int, ann_id_start: int) -> list[coco_annotation]: ann_id = ann_id_start annotations: list[coco_annotation] = [] for label in self.labels: ann_id = ann_id + 1 annotations.append({ "id": ann_id, "image_id": image_id, "category_id": label['class_id'], "area": label['width'] * label['height'], "bbox": [label['x_center'] - label['width'] / 2, label['y_center'] - label['height'] / 2, label['width'], label['height']], "iscrowd": False, }) return annotations class YoloDataset: _zip_file: ZipFile _classes: list[str] _images: list[str] _labels: list[str] def __init__(self, zip_file: ZipFile, classes=None, images=None, labels=None): if labels is None: labels = [] if images is None: images = [] if classes is None: classes = [] self._zip_file = zip_file self._classes = classes self._images = images self._labels = labels @staticmethod def from_zip_file(zip_file: str) -> 'YoloDataset': zip_file = ZipFile(zip_file, 'r') namelist = zip_file.namelist() root_name = namelist[0] namelist = list(filter(lambda x: not zip_file.getinfo(x).is_dir(), namelist)) if 'classes.txt' in namelist: classes = zip_file.read('classes.txt').decode('utf-8').split('\n') else: classes = [] images = list(filter(lambda x: x.startswith(root_name + 'images'), namelist)) labels = list(filter(lambda x: x.startswith(root_name + 'labels'), namelist)) assert len(images) == len(labels) and len(images) > 0 images.sort() labels.sort() for image, label in zip(images, labels): image_name = image.split('/')[-1] label_name = label.split('/')[-1] assert image_name.split('.')[0] == label_name.split('.')[0] return YoloDataset(zip_file, classes, images, labels) def __len__(self): return len(self._images) def __getitem__(self, index: int) -> YoloImage: image_name = self._images[index] labels = self._zip_file.read(self._labels[index]).decode('utf-8').split('\n') labels = list(filter(lambda x: len(x) > 0, labels)) labels = list(map(lambda x: x.split(' '), labels)) labels = list(map(lambda x: { 'class': self._classes[int(x[0])] if len(self._classes) > int(x[0]) else 'unknown', 'class_id': int(x[0]), 'x_center': float(x[1]), 'y_center': float(x[2]), 'width': float(x[3]), 'height': float(x[4]) }, labels)) return YoloImage(image_name, Image.open(self._zip_file.open(self._images[index])), labels) def __iter__(self): for i in range(len(self)): yield self[i] def load_image(self, image_name: str) -> Image: return Image.open(self._zip_file.open(image_name)) def to_coco(self) -> COCO: images: list[coco_image] = [] annotations: list[coco_annotation] = [] categories: list[coco_category] = [] ann_id = 0 for i in range(len(self)): image = self[i] images.append(image.to_coco_image(i)) annotations.extend(image.to_coco_annotations(i, ann_id)) ann_id = ann_id + len(image.labels) for i in range(len(self._classes)): categories.append({ "id": i, "name": self._classes[i], "supercategory": None, }) coco_ds = coco.COCO() coco_ds.dataset = { "images": images, "annotations": annotations, "categories": categories, } coco_ds.createIndex() return coco_ds if __name__ == '__main__': dataset = YoloDataset.from_zip_file('tests/coco8.zip') coco = dataset.to_coco() print(coco)