File size: 6,472 Bytes
ec500f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdba78
ec500f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdba78
ec500f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdba78
 
 
 
 
ec500f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdba78
 
 
ec500f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Author: Ming Yang
# Date: 2023/01/20
# Description: Traverse the zip file but not decompress it.
# Suppose the zip file contains yolo format annotation files.
# /
# β”œβ”€β”€ classes.txt
# β”œβ”€β”€ images
# β”‚   β”œβ”€β”€ 1.jpg
# β”‚   β”œβ”€β”€ 2.jpg
# β”‚   └── ...
# └── labels
#     β”œβ”€β”€ 1.txt
#     β”œβ”€β”€ 2.txt
#     └── ...
from datetime import datetime
from typing import Optional
from zipfile import ZipFile

from PIL import Image
from pycocotools import coco
from pycocotools.coco import COCO

yolo_label = {
    'class': str,
    'class_id': int,
    'x_center': float,
    'y_center': float,
    'width': float,
    'height': float
}

yolo_image = {
    'image_name': str,
    'image': Image,
    'labels': list[yolo_label]
}

coco_annotation = {
    "id": int,
    "image_id": int,  # the id of the image that the annotation belongs to
    "category_id": int,  # the id of the category that the annotation belongs to
    # "segmentation": RLE or [polygon],
    "area": float,
    "bbox": [float, float, float, float],  # [x,y,width,height]
    "iscrowd": bool,  # 0 or 1,
}

coco_category = {
    "id": int,
    "name": str,
    "supercategory": Optional[str],
}

coco_image = {
    "id": int,
    "width": int,
    "height": int,
    "file_name": str,
    "date_captured": Optional[datetime],
}

coco_dataset = {
    "images": list[coco_image],  # list of all images in the dataset
    "annotations": list[coco_annotation],  # list of all annotations in the dataset
    "categories": list[coco_category]  # list of all categories
}


class YoloImage:
    def __init__(self, image_name: str, image: Image, labels: list[yolo_label]):
        self.image_name = image_name
        self.image = image
        self.labels = labels

    def __repr__(self):
        return f'YoloImage(image_name={self.image_name}, image={self.image}, labels={self.labels})'

    def to_coco_image(self, id: int) -> coco_image:
        return {
            "id": id,
            "width": self.image.width,
            "height": self.image.height,
            "file_name": self.image_name,
        }

    def to_coco_annotations(self, image_id: int, ann_id_start: int) -> list[coco_annotation]:
        ann_id = ann_id_start
        annotations: list[coco_annotation] = []
        for label in self.labels:
            ann_id = ann_id + 1
            annotations.append({
                "id": ann_id,
                "image_id": image_id,
                "category_id": label['class_id'],
                "area": label['width'] * label['height'],
                "bbox": [label['x_center'] - label['width'] / 2, label['y_center'] - label['height'] / 2,
                         label['width'], label['height']],
                "iscrowd": False,
            })
        return annotations


class YoloDataset:
    _zip_file: ZipFile
    _classes: list[str]
    _images: list[str]
    _labels: list[str]

    def __init__(self, zip_file: ZipFile, classes=None, images=None, labels=None):
        if labels is None:
            labels = []
        if images is None:
            images = []
        if classes is None:
            classes = []
        self._zip_file = zip_file
        self._classes = classes
        self._images = images
        self._labels = labels

    @staticmethod
    def from_zip_file(zip_file: ZipFile) -> 'YoloDataset':
        namelist = zip_file.namelist()
        root_name = namelist[0]
        namelist = list(filter(lambda x: not zip_file.getinfo(x).is_dir(), namelist))
        if 'classes.txt' in namelist:
            classes = zip_file.read('classes.txt').decode('utf-8').split('\n')
        else:
            classes = []
        images = list(filter(lambda x: x.startswith(root_name + 'images'), namelist))
        labels = list(filter(lambda x: x.startswith(root_name + 'labels'), namelist))
        assert len(images) == len(labels) and len(images) > 0
        images.sort()
        labels.sort()
        for image, label in zip(images, labels):
            image_name = image.split('/')[-1]
            label_name = label.split('/')[-1]
            assert image_name.split('.')[0] == label_name.split('.')[0]
        return YoloDataset(zip_file, classes, images, labels)

    @staticmethod
    def from_path(path: str) -> 'YoloDataset':
        zip_file = ZipFile(path, 'r')
        return YoloDataset.from_zip_file(zip_file)

    def __len__(self):
        return len(self._images)

    def __getitem__(self, index: int) -> YoloImage:
        image_name = self._images[index]
        labels = self._zip_file.read(self._labels[index]).decode('utf-8').split('\n')
        labels = list(filter(lambda x: len(x) > 0, labels))
        labels = list(map(lambda x: x.split(' '), labels))
        labels = list(map(lambda x: {
            'class': self._classes[int(x[0])] if len(self._classes) > int(x[0]) else 'unknown',
            'class_id': int(x[0]),
            'x_center': float(x[1]),
            'y_center': float(x[2]),
            'width': float(x[3]),
            'height': float(x[4])
        }, labels))

        return YoloImage(image_name, Image.open(self._zip_file.open(self._images[index])), labels)

    def __iter__(self):
        for i in range(len(self)):
            yield self[i]

    def __deepcopy__(self, memodict=None):
        return YoloDataset(self._zip_file, self._classes, self._images, self._labels)

    def load_image(self, image_name: str) -> Image:
        return Image.open(self._zip_file.open(image_name))

    def to_coco(self) -> COCO:
        images: list[coco_image] = []
        annotations: list[coco_annotation] = []
        categories: list[coco_category] = []
        ann_id = 0
        for i in range(len(self)):
            image = self[i]
            images.append(image.to_coco_image(i))
            annotations.extend(image.to_coco_annotations(i, ann_id))
            ann_id = ann_id + len(image.labels)
        for i in range(len(self._classes)):
            categories.append({
                "id": i,
                "name": self._classes[i],
                "supercategory": None,
            })

        coco_ds = coco.COCO()
        coco_ds.dataset = {
            "images": images,
            "annotations": annotations,
            "categories": categories,
        }
        coco_ds.createIndex()
        return coco_ds


if __name__ == '__main__':
    dataset = YoloDataset.from_zip_file('tests/coco8.zip')
    coco = dataset.to_coco()
    print(coco)