Spaces:
Runtime error
Runtime error
File size: 6,472 Bytes
ec500f1 2fdba78 ec500f1 2fdba78 ec500f1 2fdba78 ec500f1 2fdba78 ec500f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Author: Ming Yang
# Date: 2023/01/20
# Description: Traverse the zip file but not decompress it.
# Suppose the zip file contains yolo format annotation files.
# /
# βββ classes.txt
# βββ images
# β βββ 1.jpg
# β βββ 2.jpg
# β βββ ...
# βββ labels
# βββ 1.txt
# βββ 2.txt
# βββ ...
from datetime import datetime
from typing import Optional
from zipfile import ZipFile
from PIL import Image
from pycocotools import coco
from pycocotools.coco import COCO
yolo_label = {
'class': str,
'class_id': int,
'x_center': float,
'y_center': float,
'width': float,
'height': float
}
yolo_image = {
'image_name': str,
'image': Image,
'labels': list[yolo_label]
}
coco_annotation = {
"id": int,
"image_id": int, # the id of the image that the annotation belongs to
"category_id": int, # the id of the category that the annotation belongs to
# "segmentation": RLE or [polygon],
"area": float,
"bbox": [float, float, float, float], # [x,y,width,height]
"iscrowd": bool, # 0 or 1,
}
coco_category = {
"id": int,
"name": str,
"supercategory": Optional[str],
}
coco_image = {
"id": int,
"width": int,
"height": int,
"file_name": str,
"date_captured": Optional[datetime],
}
coco_dataset = {
"images": list[coco_image], # list of all images in the dataset
"annotations": list[coco_annotation], # list of all annotations in the dataset
"categories": list[coco_category] # list of all categories
}
class YoloImage:
def __init__(self, image_name: str, image: Image, labels: list[yolo_label]):
self.image_name = image_name
self.image = image
self.labels = labels
def __repr__(self):
return f'YoloImage(image_name={self.image_name}, image={self.image}, labels={self.labels})'
def to_coco_image(self, id: int) -> coco_image:
return {
"id": id,
"width": self.image.width,
"height": self.image.height,
"file_name": self.image_name,
}
def to_coco_annotations(self, image_id: int, ann_id_start: int) -> list[coco_annotation]:
ann_id = ann_id_start
annotations: list[coco_annotation] = []
for label in self.labels:
ann_id = ann_id + 1
annotations.append({
"id": ann_id,
"image_id": image_id,
"category_id": label['class_id'],
"area": label['width'] * label['height'],
"bbox": [label['x_center'] - label['width'] / 2, label['y_center'] - label['height'] / 2,
label['width'], label['height']],
"iscrowd": False,
})
return annotations
class YoloDataset:
_zip_file: ZipFile
_classes: list[str]
_images: list[str]
_labels: list[str]
def __init__(self, zip_file: ZipFile, classes=None, images=None, labels=None):
if labels is None:
labels = []
if images is None:
images = []
if classes is None:
classes = []
self._zip_file = zip_file
self._classes = classes
self._images = images
self._labels = labels
@staticmethod
def from_zip_file(zip_file: ZipFile) -> 'YoloDataset':
namelist = zip_file.namelist()
root_name = namelist[0]
namelist = list(filter(lambda x: not zip_file.getinfo(x).is_dir(), namelist))
if 'classes.txt' in namelist:
classes = zip_file.read('classes.txt').decode('utf-8').split('\n')
else:
classes = []
images = list(filter(lambda x: x.startswith(root_name + 'images'), namelist))
labels = list(filter(lambda x: x.startswith(root_name + 'labels'), namelist))
assert len(images) == len(labels) and len(images) > 0
images.sort()
labels.sort()
for image, label in zip(images, labels):
image_name = image.split('/')[-1]
label_name = label.split('/')[-1]
assert image_name.split('.')[0] == label_name.split('.')[0]
return YoloDataset(zip_file, classes, images, labels)
@staticmethod
def from_path(path: str) -> 'YoloDataset':
zip_file = ZipFile(path, 'r')
return YoloDataset.from_zip_file(zip_file)
def __len__(self):
return len(self._images)
def __getitem__(self, index: int) -> YoloImage:
image_name = self._images[index]
labels = self._zip_file.read(self._labels[index]).decode('utf-8').split('\n')
labels = list(filter(lambda x: len(x) > 0, labels))
labels = list(map(lambda x: x.split(' '), labels))
labels = list(map(lambda x: {
'class': self._classes[int(x[0])] if len(self._classes) > int(x[0]) else 'unknown',
'class_id': int(x[0]),
'x_center': float(x[1]),
'y_center': float(x[2]),
'width': float(x[3]),
'height': float(x[4])
}, labels))
return YoloImage(image_name, Image.open(self._zip_file.open(self._images[index])), labels)
def __iter__(self):
for i in range(len(self)):
yield self[i]
def __deepcopy__(self, memodict=None):
return YoloDataset(self._zip_file, self._classes, self._images, self._labels)
def load_image(self, image_name: str) -> Image:
return Image.open(self._zip_file.open(image_name))
def to_coco(self) -> COCO:
images: list[coco_image] = []
annotations: list[coco_annotation] = []
categories: list[coco_category] = []
ann_id = 0
for i in range(len(self)):
image = self[i]
images.append(image.to_coco_image(i))
annotations.extend(image.to_coco_annotations(i, ann_id))
ann_id = ann_id + len(image.labels)
for i in range(len(self._classes)):
categories.append({
"id": i,
"name": self._classes[i],
"supercategory": None,
})
coco_ds = coco.COCO()
coco_ds.dataset = {
"images": images,
"annotations": annotations,
"categories": categories,
}
coco_ds.createIndex()
return coco_ds
if __name__ == '__main__':
dataset = YoloDataset.from_zip_file('tests/coco8.zip')
coco = dataset.to_coco()
print(coco)
|