from citekit.cite_modules.LLM import LLM from citekit.cite_modules.augment_model import Retriever from citekit.pipeline.pipeline import Pipeline, PIPELINE_OUTPUT,PIPELINE_DOC_CACHE from citekit.prompt.prompt import Prompt, DocPrompt,ALCEDocPrompt,NewALCEVanillaPrompt from citekit.Dataset.Dataset import PromptDataset from citekit.evaluator.evaluator import DefaultEvaluator from citekit.utils.utils import output_begin_with,output_end_with import json from parser import * import argparse def one_paragraph(text): paras = text.lstrip('\n').split('\n') if not paras: return '' else: return paras[0].rstrip('\n') def cut_and_make_as(datakey): def f(passage): return {datakey:one_paragraph(passage)} return f def if_output(x): return not (output_begin_with('check')(x)) def drop_end_and_output(x): x = one_paragraph(x) if x[-len('End.'):] == 'End.': x = x[:-len('End.')] if x[:len('output')] =='output' : x = x[len('output'):] if x[-len('End'):] == 'End': x = x[:-len('End')] return x if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--save_path", type=str, default='result.json', help="Path to the config file") parser.add_argument("--model", type=str, default='gpt-3.5-turbo-0301', help="model name or path") parser.add_argument("--shots", type=int, default=2, help="number of shots") parser.add_argument("--ndoc", type=int, default=5, help="number of docs") parser.add_argument("--pr", action='store_true', help="use cite PR") parser.add_argument("--rouge", action='store_true', help="use rouge") parser.add_argument("--mauve", action='store_true', help="eval mauve") parser.add_argument("--qa", action='store_true', help="eval qa") parser.add_argument("--length", type=bool, default=True, help="eval length") parser.add_argument("--temp", type=float, default=0.5, help="temperature") parser.add_argument("--claims", action='store_true', help="eval claims") parser.add_argument("--qampari", type=str, default=False, help="eval qampari") parser.add_argument("--turns", type=int, default=6, help="turns") parser.add_argument("--dataset", type=str, default='data/asqa_eval_gtr_top100.json', help="dataset") parser.add_argument("--demo", type=str, default='prompts/asqa_default.json', help="demo") args = parser.parse_args() with open('data/asqa_eval_gtr_top100.json','r',encoding='utf-8') as file: dataset = json.load(file) with open('prompts/asqa_interact_doc_id.json','r',encoding='utf-8') as file: demo = json.load(file) documents = [DocPrompt().load_data(list(enumerate(data['docs'][:10])),Title = lambda data: data[1]['title'], Passage = lambda data: data[1]['text']) for data in dataset] llm_instruction = demo['instruction'] dataset = PromptDataset(dataset,'question','answer','qa_pairs', extract = lambda data: ''.join(ALCEDocPrompt().default_load_data_extraction(data['docs'][:10])), docs = lambda data: ALCEDocPrompt().default_load_data(data['docs'][:args.ndoc]))[:100] shots = '\n'.join(NewALCEVanillaPrompt().load_data(demo['demos'][:args.shots], INST = lambda _:llm_instruction, question = lambda data: data['question'], docs = lambda data:''.join(ALCEDocPrompt().default_load_data_extraction(demo['demos'][0]['docs'][:args.ndoc])), answer = lambda data: '\n'.join(data['answer']))) # llm llm_prompt = Prompt(template='',components={'INST':'{INST}\n\n', 'shots':'{shots}\n', 'question':'Question:{question}\n\n', 'extract':'{extract}\n', 'docs':'{docs}', 'record':'Answer:\n{record}', 'forceAnswer':'\n{forceAnswer}'}) retriever_prompt = Prompt(template='',components={'IDs':'{IDs}'}) llm = LLM(model=args.model, prompt_maker=llm_prompt, self_prompt={'INST':llm_instruction, 'shots': shots+'\n','forceAnswer': 'Answer: \n'},stop=['\n\n'],max_turn=args.turns) eval = DefaultEvaluator(args) pipeline = Pipeline(llm = llm, head_prompt_maker=llm_prompt,evaluator = eval,dataset = dataset,save_path=args.save_path) retriever = Retriever(prompt_maker=retriever_prompt,pipeline=pipeline,topk=3, documents=documents) llm.set_target(retriever, output_begin_with('check'), post_processing=cut_and_make_as('IDs')) llm.set_target(llm,if_output, post_processing=lambda x: {'forceAnswer': Prompt.UNABLE}) llm.add_to_head('record') llm.set_output(if_output,post_processing= drop_end_and_output, end=False) llm.set_output(output_end_with('End.'), post_processing=drop_end_and_output , end = True) llm.set_output(output_end_with('End'), post_processing=drop_end_and_output , end = True) retriever.set_target(llm ,post_processing=lambda input, output: {'docs': output, 'forceAnswer': 'Output:'}) graph = PipelineGraph(pipeline) graph.visualize() #pipeline.run_on_dataset(datakeys=['question','extract'],init_docs='docs')