from citekit.cite_modules.LLM import LLM from citekit.cite_modules.augment_model import AttributingModule from citekit.pipeline.pipeline import Pipeline, PIPELINE_OUTPUT,PIPELINE_DOC_CACHE from citekit.prompt.prompt import Prompt, ALCEDocPrompt from citekit.Dataset.Dataset import PromptDataset from citekit.evaluator.evaluator import DefaultEvaluator import argparse import json from citekit.utils.utils import cut_and_make_as,one_paragraph,make_as PARA_SEP = '\n\n' if __name__ == '__main__': # SETTING ARGS parser = argparse.ArgumentParser() parser.add_argument("--save_path", type=str, default='res.json', help="Path to the config file") parser.add_argument("--model", type=str, default='gpt-3.5-turbo', help="model name or path") parser.add_argument("--shots", type=int, default=1, help="number of shots") parser.add_argument("--ndoc", type=int, default=3, help="number of docs") parser.add_argument("--pr", action='store_true', help="use cite PR") parser.add_argument("--rouge", action='store_true', help="use rouge") parser.add_argument("--temp", type=float, default=0.5, help="temperature") parser.add_argument("--qa", action='store_true', help="eval qa") parser.add_argument("--mauve", action='store_true', help="eval mauve") parser.add_argument("--length", type=bool, default=True, help="eval length") parser.add_argument("--claims", action='store_true', help="eval claims") parser.add_argument("--qampari", type=str, default=False, help="eval qampari") parser.add_argument("--turns", type=int, default=1, help="k") parser.add_argument("--use_fast_pr", type=str, default=False, help="test") parser.add_argument("--dataset", type=str, default='data/asqa_eval_gtr_top100.json', help="dataset") parser.add_argument("--demo", type=str, default='prompts/AnG.json', help="demo") parser.add_argument("--mode", type=str, default='AnG', help="mode: AnG or plan") args = parser.parse_args() # DATA LOADING file_path = args.dataset demo_path = args.demo with open(file_path,'r',encoding='utf-8') as file: dataset = json.load(file) with open(demo_path,'r',encoding='utf-8') as file: demo = json.load(file)[args.mode] dataset = PromptDataset(dataset,'question','answer','answers','qa_pairs','claims', docs = lambda data: ALCEDocPrompt().default_load_data_wo_title(data['docs'][:args.ndoc]))[:200] if args.mode == 'AnG': gen_shot = demo['gen_instruction'] + PARA_SEP + demo['gen_shot'] + PARA_SEP answer_ppt = {'INST':demo['gen_instruction'],'shot':gen_shot, 'add':'The next sentence is:'} elif args.mode == 'plan': shot = demo['shot1'] + demo['shot2'] self_ppt = {'INST':demo['INST'],'shot':shot, 'add':'subquestions: \n'} answer_shot = demo['answer_shot_1'] + demo['answer_shot_2'] answer_ppt = {'INST':demo['answer_inst'],'shot':answer_shot,'add':''} prompt = Prompt(template='', components={'INST':'{INST}\n\n', 'shot':'{shot}', 'question':'Question:{question}\n\n', 'docs':'{docs}\n', 'span':'The highlighted spans are: \n{span}\n\n', 'prefix':'Prefix: {prefix}\n\n', 'sub':'subquestions: \n{sub}\n\n', 'add':'Answer: \n{add}' }) plan_prompt = Prompt(template='', components={'INST':'{INST}\n\n', 'shot':'{shot}', 'question':'Question:{question}\n\n', 'docs':'{docs}\n', 'sub':'subquestions: \n{sub}\n\n', 'add':'{add}'}) # PIPELINE evaluator = DefaultEvaluator(args) if args.mode == 'AnG': attribute = AttributingModule(model = args.model) elif args.mode == 'plan': attribute = LLM(model = args.model, prompt_maker = plan_prompt,self_prompt=self_ppt,post_processing=cut_and_make_as('sub')) answer = LLM(model = args.model, prompt_maker = prompt, self_prompt=answer_ppt, share_model_with=attribute.get_first_module(), post_processing=cut_and_make_as('prefix'), iterative=True) if args.mode == 'AnG': attribute.set_target(answer) elif args.mode == 'plan': attribute.set_target(answer,post_processing=cut_and_make_as('sub')) pipeline = Pipeline(save_path=args.save_path, llm = answer, module = attribute, evaluator = evaluator, dataset = dataset) answer.set_output(post_processing=lambda ls: ''.join(map(one_paragraph,ls))) pipeline.run_on_dataset(datakeys=['question','docs'],init_docs='docs',initial_module = attribute)