File size: 47,703 Bytes
96b6673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 |
from nltk import sent_tokenize
import nltk
import re
import random
import transformers
import numpy as np
from citekit.utils.utils import *
from rouge import Rouge
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import copy
import torch
from tqdm import tqdm
import sys
import logging
import random
from itertools import product,combinations
import time
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
PIPELINE_OUTPUT = 'output'
PIPELINE_DOC_CACHE = 'doc_cache'
global autoais_model, autoais_tokenizer
autoais_model = None
autoais_tokenizer = None
get_docs_by_index = lambda i,docs: docs[i] if i < len(docs) else None
ais_LLM = None
QA_MODEL = "gaotianyu1350/roberta-large-squad"
AUTOAIS_MODEL = "google/t5_xxl_true_nli_mixture"
AUTOAIS_MODEL_ABSOLUTE = "/mnt/usercache/huggingface/t5_xxl_true_nli_mixture"
def get_cite(sent):
return re.sub(r"\[\d+", "", re.sub(r" \[\d+", "", sent)).replace(" |", "").replace("]", ""),[int(r[1:]) - 1 for r in re.findall(r"\[\d+", sent)]
def entail(premise, claim):
"""
Run inference for assessing AIS between a premise and hypothesis.
Adapted from https://github.com/google-research-datasets/Attributed-QA/blob/main/evaluation.py
"""
global autoais_model, autoais_tokenizer
input_text = "premise: {} hypothesis: {}".format(premise, claim)
input_ids = autoais_tokenizer(input_text, return_tensors="pt").input_ids.to(autoais_model.device)
with torch.inference_mode():
outputs = autoais_model.generate(input_ids, max_new_tokens=10)
result = autoais_tokenizer.decode(outputs[0], skip_special_tokens=True)
inference = 1 if result == "1" else 0
return inference
def load_auto_ais():
global autoais_model, autoais_tokenizer
print('Initializing eval model for citation precision and recall...')
try:
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, device_map="auto")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
except:
print('Unable to load model from hub, trying to load from local path...')
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, torch_dtype=torch.bfloat16, device_map="auto")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, use_fast=False)
print('Done!')
def compute_mauve(data):
"""Compute Mauve score."""
logger.info("Computing MAUVE...")
human_data = []
model_data = []
for item in data:
# Remove ending punctuations
# Remove any new lines
# Truncate by 100 words
human_data.append(
' '.join((item['question'] + " " + item['answer'].strip()).split()[:100]).rstrip(string.punctuation))
model_data.append(
' '.join((item['question'] + " " + item['output'].strip()).split()[:100]).rstrip(string.punctuation))
import mauve
out = mauve.compute_mauve(
p_text=human_data,
q_text=model_data,
device_id=0,
max_text_length=512,
verbose=True,
batch_size=8,
featurize_model_name="gpt2-large"
)
return out.mauve * 100
def compute_rouge_l(data):
total = len(data)
res = {
"r": 0.0,
"p": 0.0,
"f": 0.0
}
for item in data:
if item['output'] and item['answer']:
rouge = Rouge()
scores = rouge.get_scores(item['output'], item['answer'])
res['r'] += scores[0]['rouge-l']['r']
res['p'] += scores[0]['rouge-l']['p']
res['f'] += scores[0]['rouge-l']['f']
else:
print('Warning: no hypothesis or references')
res['r'] /= total
res['p'] /= total
res['f'] /= total
return res
def compute_qa(question, output, short_answers, qa_pipeline=None):
"""Compute QA-based accuracy.
Args:
Returns:
QA metrics (QA-EM, QA-F1, QA-Hit)
"""
# Load model
if not qa_pipeline:
qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL, device='mps')
# Get prediction
em, f1, bins = 0,0,0
context = output if len(output) > 0 else " "
result = qa_pipeline(question=question, context=context, handle_impossible_answer=True)
loc_counter, loc_em, loc_f1 = 0, 0, 0
print(result)
prediction = result["answer"]
loc_em = max([compute_exact(a, prediction) for a in short_answers])
loc_f1 = max([compute_f1(a, prediction) for a in short_answers])
loc_counter += 1
em= loc_em / loc_counter
f1= loc_f1 / loc_counter
bins = int(loc_em == loc_counter)
return em, f1, bins
def compute_qa(data):
"""Compute QA-based accuracy.
Args:
data: requires filed `qa_pairs/short_answers` and `output`
Returns:
QA metrics (QA-EM, QA-F1, QA-Hit)
"""
if 'qa_pairs' not in data[0] or data[0]['qa_pairs'] is None:
#logger.warn("Warning: no QA pairs found in data")
return {
'QA-EM': 0,
'QA-F1': 0,
'QA-Hit': 0,
}
# Load model
#logger.info("Loading the RoBERTa-large SQuAD model for QA-based accuracy...")
global qa_pipeline
if not qa_pipeline:
qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL)
#logger.info("Done")
# Get prediction
#logger.info("Computing the QA-based accuracy...")
em, f1, bins = [], [], []
for item in tqdm(data):
question = [qa_pair['question'] for qa_pair in item['qa_pairs']]
context = item['output'] if len(item['output']) > 0 else " "
results = qa_pipeline(question=question, context=context, handle_impossible_answer=True)
loc_counter, loc_em, loc_f1 = 0, 0, 0
for idx, res in enumerate(results):
answers = item["qa_pairs"][idx]["short_answers"]
prediction = res["answer"]
loc_em += max([compute_exact(a, prediction) for a in answers])
loc_f1 += max([compute_f1(a, prediction) for a in answers])
loc_counter += 1
em.append(loc_em / loc_counter)
f1.append(loc_f1 / loc_counter)
bins.append(loc_em == loc_counter)
return {
'QA-EM': 100 * np.mean(em),
'QA-F1': 100 * np.mean(f1),
'QA-Hit': 100 * np.mean(bins)
}
def cite_pr(sent_with_cite, docs = None, get_docs = get_docs_by_index, get_cite = get_cite, max_cite= None,rich_return = False):
"""
: sent_with_cite: ONE sentence with citation like [1][2][3]
: get_docs: by default like [1][2], get ids
: docs: List, all the COMPLETE documents with TITLE
: return
number of citations, integer
recall (0 or 1)
precision (number of relevent documents)
optional;
multi_cite
mcite_support
mcite_overcite
"""
if rich_return:
raise NotImplementedError
result = {'num_cites': 0,'recall':0,'precision':0,'multi_cite':0,'mcite_support' :0,'mcite_overcite':0}
sent, cites= get_cite(sent_with_cite)
if not cites:
return (0, 0, 0) if not rich_return else result # no citations
if max_cite:
cites = cites[:max_cite]
num_cites = len(cites)
result['num_cites'] = num_cites
refs = [get_docs(cite, docs) for cite in cites]
if None in refs:
return (num_cites, 0, 0) if not rich_return else result# wrong citation(s)
# recall
recall = entail(premise=''.join(refs),claim=sent)
result['recall'] = recall
# precision
precision = 0
if num_cites == 1:
precision = recall
else:
for idx, ref in enumerate(refs):
if entail(premise=ref,claim=sent):
precision += 1
else:
if not entail(premise=''.join([refs[i] for i in range(len(refs)) if i != idx]), claim = sent):
precision += 1
elif recall:
result['mcite_overcite'] = 1
result['precision'] = precision
#other
if num_cites > 1:
result['multi_cite'] = 1
if recall:
result['mcite_support'] = 1
return (num_cites, recall, precision) if not rich_return else result
def cite_pr_answer(answer, docs = None, get_docs = get_docs_by_index, get_cite = get_cite, max_cite= None,rich_return = False):
epsilon = 1e-8
num_c = 0
recall = 0
precision = 0
sents = sent_tokenize(answer)
for sent in sents:
c,r,p = cite_pr(sent,get_docs=get_docs,docs=docs,get_cite=get_cite,max_cite=max_cite,rich_return=rich_return)
num_c += c
recall += r
precision += p
# diveded by Zero!
return recall/(len(sents)+ epsilon), precision/(num_c+epsilon)
def _run_nli_autoais(passage, claim, test = False):
"""
Run inference for assessing AIS between a premise and hypothesis.
Adapted from https://github.com/google-research-datasets/Attributed-QA/blob/main/evaluation.py
"""
if not test:
global autoais_model, autoais_tokenizer
if not autoais_model:
load_auto_ais()
input_text = "premise: {} hypothesis: {}".format(passage, claim)
input_ids = autoais_tokenizer(input_text, return_tensors="pt").input_ids.to(autoais_model.device)
with torch.inference_mode():
outputs = autoais_model.generate(input_ids, max_new_tokens=10)
result = autoais_tokenizer.decode(outputs[0], skip_special_tokens=True)
inference = 1 if result == "1" else 0
return inference
else:
res = random.randint(0,1)
return res
def _run_llm_autoais(passage, claim):
global ais_LLM
assert(ais_LLM)
return int(ais_LLM.generate(premise = passage, claim = claim))
def test_compute_autoais(data):
print(data[0]['docs'][:5])
print(data[0]['output'][:5])
return {
"citation_rec": random.randint(0,100),
"citation_prec": random.randint(0,100),
}
def compute_autoais(data,
decontext=False,
concat=False,
qampari=False,
at_most_sents = 3,
at_most_citations=3,
entail_function = _run_nli_autoais):
"""
Compute AutoAIS score.
Args:
data: requires field `output` and `docs`
- docs should be a list of items with fields `title` and `text` (or `phrase` and `sent` for QA-extracted docs)
citation: check citations and use the corresponding references.
decontext: decontextualize the output
"""
global autoais_model, autoais_tokenizer
ais_scores = []
ais_scores_prec = []
sent_total = 0
sent_mcite = 0
sent_mcite_support = 0
sent_mcite_overcite = 0
autoais_log = []
for item in tqdm(data):
# Get sentences by using NLTK
if qampari:
print('now qampari...')
sents = [item['question'] + " " + x.strip() for x in
item['output'].rstrip().rstrip(".").rstrip(",").split(",")]
else:
sents = sent_tokenize(item['output'])[:at_most_sents]
if len(sents) == 0:
ais_scores.append(0.0)
ais_scores_prec.append(0.0) # len(sents))
continue
target_sents = [remove_citations(sent).strip() for sent in sents]
entail = 0
entail_prec = 0
total_citations = 0
for sent_id, sent in enumerate(sents):
target_sent = target_sents[sent_id] # Citation removed and (if opted for) decontextualized
joint_entail = -1 # Undecided
# Find references
#ref = [int(r[1:]) - 1 for r in re.findall(r"\[\d+", sent)] # In text citation id starts from 1
matches = re.findall(r"\[(\d+(?:,\s*\d+)*)\]", sent)
ref = [int(num)-1 for match in matches for num in match.replace(' ', '').split(',')]
if len(ref) == 0:
# No citations
joint_entail = 0
elif any([ref_id >= len(item['docs']) for ref_id in ref]):
# Citations out of range
joint_entail = 0
else:
if at_most_citations is not None:
ref = ref[:at_most_citations]
total_citations += len(ref)
joint_passage = '\n'.join([(item['docs'][psgs_id]) for psgs_id in ref])
# If not directly rejected by citation format error, calculate the recall score
if joint_entail == -1:
joint_entail = entail_function(joint_passage, target_sent)
autoais_log.append({
#"question": item['question'],
"output": item['output'],
"claim": sent,
"passage": [joint_passage],
"model_type": "NLI",
"model_output": joint_entail,
})
entail += joint_entail
if len(ref) > 1:
sent_mcite += 1
# calculate the precision score if applicable
if joint_entail and len(ref) > 1:
sent_mcite_support += 1
# Precision check: did the model cite any unnecessary documents?
for psgs_id in ref:
# condition A
passage = item['docs'][psgs_id]
nli_result = entail_function(passage, target_sent)
# condition B
if not nli_result:
subset_exclude = copy.deepcopy(ref)
subset_exclude.remove(psgs_id)
passage = '\n'.join([item['docs'][pid] for pid in subset_exclude])
nli_result =entail_function(passage, target_sent)
if nli_result: # psgs_id is not necessary
flag = 0
sent_mcite_overcite += 1
else:
entail_prec += 1
else:
entail_prec += 1
else:
entail_prec += joint_entail
sent_total += len(sents)
ais_scores.append(entail / len(sents))
ais_scores_prec.append(entail_prec / total_citations if total_citations > 0 else 0) # len(sents))
if sent_mcite > 0 and sent_mcite_support > 0:
print(
"Among all sentences, %.2f%% have multiple citations, among which %.2f%% are supported by the joint set, among which %.2f%% overcite." % (
100 * sent_mcite / sent_total,
100 * sent_mcite_support / sent_mcite,
100 * sent_mcite_overcite / sent_mcite_support
))
return {
"citation_rec": 100 * np.mean(ais_scores),
"citation_prec": 100 * np.mean(ais_scores_prec),
}
def compute_claims_test(data):
print(data[0]['claims'])
print(data[0][PIPELINE_OUTPUT])
return random.randint(1,100)
def compute_claims(data):
global autoais_model, autoais_tokenizer
if autoais_model is None:
#logger.info("Loading AutoAIS model...")
# autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
device_map="auto")
# autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
#logger.info("Computing claims...")
scores = []
for item in tqdm(data):
normalized_output = remove_citations(item['output'])
entail = 0
claims = item["claims"]
for claim in claims:
entail += _run_nli_autoais(normalized_output, claim)
scores.append(entail / len(claims))
return 100 * np.mean(scores)
#citation appropriateness
def check_if_citations_needed(passages, answer, grain):
def _format_document(doc):
"""Format document for AutoAIS.
if "sent" in doc:
# QA-extracted docs
return "Title: %s\n%s" % (doc['title'], doc['sent'])
else:
return "Title: %s\n%s" % (doc['title'], doc['text'])
"""
return doc
global autoais_model, autoais_tokenizer
if autoais_model is None and False:
#logger.info("Loading AutoAIS model...")
# autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
device_map="auto")
# autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
if grain=="over_fine" or grain=="more_over_fine":
num_passages = len(passages)
passages_per_chunk = num_passages // 5 # Divide passages evenly into 5 chunks
remainder = num_passages % 5 # Handle remaining passages
passages_five=[]
start_idx = 0
for i in range(5):
end_idx = start_idx + passages_per_chunk
if remainder > 0:
end_idx += 1
remainder -= 1
chunk_passages = passages[start_idx:end_idx]
passages_five.append('\n'.join([_format_document(p) for p in chunk_passages]))
start_idx = end_idx
passages=passages_five
combinations_3 = combinations(passages, 3) # 获取所有三个passage的组合
for combination in combinations_3:
joint_passage = '\n'.join(
[passage for passage in combination]) # 将三个passage连接为一个字符串,并保留格式
entail = _run_nli_autoais(joint_passage, answer)
if entail == 1:
return 1
return 0
else:
if len(passages)>=3:#正常粒度
combinations_3 = combinations(passages, 3)
for combination in combinations_3:
joint_passage = '\n'.join(
[_format_document(passage) for passage in combination])
entail = _run_nli_autoais(joint_passage, answer)
if entail == 1:
return 1
return 0
else:#粗粒度
joint_passage = '\n'.join(
[_format_document(passage) for passage in passages])
entail = _run_nli_autoais(joint_passage, answer)
if entail == 1:
return 1
else:
return 0
#citaion granularity
def find_permutations(n, m):
'''
:param n: 最大数量总和
:param m: 位长度
:return:
'''
# Generate all possible sequences of length m
all_sequences = list(product(range(n + 1), repeat=m))
#print('all_sequences', all_sequences)
# Filter sequences where the sum of digits equals n
valid_sequences = [seq for seq in all_sequences if sum(seq) == n]
return valid_sequences
def get_subspans(list_span, span_count):
list_subspan = []
for i in range(0, len(list_span) - span_count + 1):
list_subspan.append(list_span[i: i + span_count])
return list_subspan
def get_all_span_comb(list_list_span, target_span_count=-1):
if target_span_count == -1: # 所有子集
max_span_count = len(sum(list_list_span, []))
doc_count = len(list_list_span)
list_span_comb_all = []
for span_count in range(1, max_span_count + 1):
list_comb = find_permutations(span_count, doc_count)#给定数量的子串在文本中的所有可能组合
list_span_comb = [] # 最终当前长度的所有可能组合
for comb in list_comb:
list_list_subspan = []
for idx_doc, span_count_doc in enumerate(comb):
list_subspan = get_subspans(list_list_span[idx_doc], span_count_doc)
if len(list_subspan) == 0:
list_list_subspan = None
break
list_list_subspan.append(list_subspan)
if list_list_subspan:
list_span_comb_cur = [sum(list(combination), []) for combination in product(*list_list_subspan)]
list_span_comb_cur = list(set([tuple(span_comb) for span_comb in list_span_comb_cur]))
list_span_comb += list_span_comb_cur
list_span_comb_all += list_span_comb
list_span_comb_all = set(list_span_comb_all)
else: # 当前长度的组合
doc_count = len(list_list_span)
list_comb = find_permutations(target_span_count, doc_count)
list_span_comb = [] # 最终当前长度的所有可能组合
for comb in list_comb:
list_list_subspan = []
for idx_doc, span_count_doc in enumerate(comb):
list_subspan = get_subspans(list_list_span[idx_doc], span_count_doc)
if len(list_subspan) == 0:
list_list_subspan = None
break
list_list_subspan.append(list_subspan)
if list_list_subspan:
list_span_comb_cur = [combination for combination in product(*list_list_subspan)]
for idx in range(len(list_span_comb_cur)):
list_span_comb_cur[idx] = tuple([tuple(span_comb) for span_comb in list_span_comb_cur[idx]])
list_span_comb += list_span_comb_cur
list_span_comb_all = list_span_comb
list_span_comb_all = set(list_span_comb_all)
return list_span_comb_all
def run_converge_2(list_list_span=None, sentence=None):
'''
基于假设:更长的text不能蕴含,则其任何子串都不能蕴含
span数量递减(提供更多的剪枝选项)
最终gold可能有一个span的误差
'''
######
#print('origin nli count', len(get_all_span_comb(list_list_span, target_span_count=-1)))#给定文本的所有可能的子串组合
max_span_count = len(sum(list_list_span, [])) # span总数
set_comb_hash = set([])
### span数量二分
nli_count = 0
skip_count = 0
list_list_span_gold = copy.copy(list_list_span) # 当前能够精准蕴含的span
span_count_min, span_count_max = 1, max_span_count
start_time=time.time()
timeout=300
while span_count_min < span_count_max:#每次迭代中不断寻找更小的子串组合
span_count_cur = span_count_max - 1
flag_find = False
if time.time() - start_time > timeout:
print('timeout!')
list_list_span_gold=[]
break
### 存在可蕴含,继续找更少的span
### 不存在可蕴含,继续找更多的span
# 长度为span_count_max - 1的所有可能的子串组合
set_comb_cur = get_all_span_comb(list_list_span, target_span_count=span_count_cur)
list_comb_cur = list(set_comb_cur)
random.shuffle(list_comb_cur)
for comb in list_comb_cur:
list_list_span_cur = [list(t) for t in comb]
list_span_cur = sum(list_list_span_cur, [])
str_text = ' '.join(list_span_cur) # TODO: 统一字符串化的方式
if hash(str_text) in set_comb_hash:
skip_count += 1
continue
#### ⚠️ 注意在这里替换nli函数
nli_label = _run_nli_autoais(str_text, sentence) # TODO: nli label function
nli_count += 1
if nli_label == 1: # 只要存在可蕴含,直接继续找更少的span
list_list_span_gold = copy.copy(list_list_span_cur)
span_count_max = span_count_cur#更新span数量上限
flag_find = True
# print(f"find nli!, nli_count: {nli_count}, skip_count: {skip_count}, len(set_comb_hash): {len(set_comb_hash)}", )
break
else: # 不能蕴含,剪枝所有子集
set_comb_cur_del = get_all_span_comb(list_list_span_cur, target_span_count=-1)
set_comb_hash_cur = set([hash(' '.join(list(tuple_comb_))) for tuple_comb_ in set_comb_cur_del]) # TODO: 统一字符串化的方式
set_comb_hash |= set_comb_hash_cur
if flag_find == False:
print(f"CAN'T find nli!, nli_count: {nli_count}, skip_count: {skip_count}, len(set_comb_hash): {len(set_comb_hash)}", )
break
span_count_gold = span_count_max # gold的span数量
print('len(set_comb_del)', len(set_comb_hash))
print('nli_count', nli_count, 'skip_count', skip_count, 'span_count_gold', span_count_gold)
return list_list_span_gold
def compute_autoais_grained(data,
at_most_citations=3,method='ALCE',grain='default'):
"""
Compute AutoAIS score.
Args:
data: requires field `output` and `docs`
- docs should be a list of items with fields `title` and `text` (or `phrase` and `sent` for QA-extracted docs)
citation: check citations and use the corresponding references.
decontext: decontextualize the output
"""
global autoais_model, autoais_tokenizer
if autoais_model is None and False:
#logger.info("Loading AutoAIS model...")
# autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
device_map="auto")
# autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
def _format_document(doc):
"""Format document for AutoAIS."""
if isinstance(doc, dict):
if "sent" in doc:
# QA-extracted docs
return "Title: %s\n%s" % (doc['title'], doc['sent'])
else:
return "Title: %s\n%s" % (doc['title'], doc['text'])
elif isinstance(doc,str):
return doc
#logger.info(f"Running AutoAIS...")
ais_scores_need = [] # 是否需要引用
ais_scores = [] # quote_recall
ais_doc_scores=[]#doc_recall
sent_total = 0
autoais_log = []
granularity_list = []
skipped =0
for item in tqdm(data):
output = item['output']
if method=='baseline':
model_answer=item['output_parse']['answer']
answer = ''
reference = {}
span_contents = {}
if not model_answer["text"].endswith("."):
model_answer["text"] += "."
answer += " " + model_answer["text"]
spans = model_answer['reference']
for span in spans:
match = re.match(r'^(\d+)\.', span)
if match:
span_number = match.group(1)
span_content = span.split('. ', 1)[1].strip() # 获取1. 后面的内容
span_contents[span_number] = span_content
reference.update(span_contents)
item['output_answer'] = answer.strip()
item['output_ref_span'] = reference
output = item['output_answer']
elif method=='ALCE':
# 匹配 According to Document
pattern_doc = r"According to Document \[(\d+)\]"
# 匹配 (Title: Godfrey Chitalu)
pattern_title = r"\(Title: [^\)]+\)"
output = re.sub(pattern_doc, r"[\1]", output)
output = re.sub(pattern_title, "", output)
output=output.strip().split("\n")[0]
output=output.replace("<|im_end|>", "")
# Get sentences by using NLTK
sents = sent_tokenize(output)[:3]
if len(sents) == 0:
continue
target_sents = [remove_citations(sent).strip() for sent in sents]
output_ref_span = item.get('output_ref_span', {})
# sent_joint_passage = '\n'.join([_format_document(doc) for doc in item['docs']])
entail = 0
entail_doc=0
total_citations = 0
need_citations_sentences = 0 # 一个回答中需要引用的句子数量
correct_predictions = 0 # 新增:记录正确的预测是否需要引用的子句数量
for sent_id, sent in enumerate(sents):
target_sent = target_sents[sent_id] # Citation removed and (if opted for) decontextualized
joint_entail = -1 # Undecided
joint_doc_entail=-1
# 1. appropriatness
# 每句话是否需要引用
need_citations = check_if_citations_needed(item['docs'], target_sent,grain)
if method=='baseline':
# Find references number
ref_mark = [int(r[1:]) for r in re.findall(r"\{\d+", sent)]
# 引用的span(拼接)match document
ref, ref_span = match_document(ref_mark, output_ref_span)
#logger.info(f"For `{target_sent}`, find citations {ref}")
ref_id = [x -1 for x in ref]
processed_refs = set()
ref_passage = []
for psgs_id in ref_id:
if 0 <= psgs_id < len(item['docs']) and psgs_id not in processed_refs:
ref_passage.append(_format_document(item['docs'][psgs_id]))
processed_refs.add(psgs_id)
elif psgs_id in processed_refs:
print("Warning: psgs_id already processed:", psgs_id + 1)
else:
print("Error: psgs_id out of range:", psgs_id+1)
joint_span = '\n'.join(ref_span)
joint_passage = '\n'.join(ref_passage)
elif method=='ALCE':
ref = list(set([int(r[1:]) for r in re.findall(r"\[\d+", sent)]))
#logger.info(f"For `{target_sent}`, find citations {ref}")
ref_id=list(set([int(r[1:])-1 for r in re.findall(r"\[\d+", sent)]))
processed_refs = set()
ref_passage = []
for psgs_id in ref_id:
if 0 <= psgs_id < len(item['docs']) and psgs_id not in processed_refs:
ref_passage.append(_format_document(item['docs'][psgs_id]))
processed_refs.add(psgs_id)
elif psgs_id in processed_refs:
print("Warning: psgs_id already processed:", psgs_id+1)
else:
print("Error: psgs_id out of range:", psgs_id+1)
ref_span=ref_passage
joint_passage = '\n'.join(ref_passage)
joint_span=joint_passage
autoais_log.append({
"question": item['question'],
"output_answer": item['output'],
"docs": item['docs'],
"claim": {
"sentence": sent,
"if_citations_needed": need_citations,
"has_reference": ref,
"doc_recall": None,
"quote_recall": None,
"granularity_score":None,
"granularity_span":None
}
})
if len(ref) == 0:
# No citations
joint_entail = 0
joint_doc_entail=0
elif any([ref_id > len(item['docs']) for ref_id in ref]):
# Citations out of range
joint_entail = 0
joint_doc_entail=0
else:
if at_most_citations is not None:
ref = ref[:at_most_citations]
total_citations += len(ref)
# 更新正确预测是否需要引用的数量
if_citations_needed = autoais_log[-1]["claim"]["if_citations_needed"]
has_reference = autoais_log[-1]["claim"]["has_reference"]
if (if_citations_needed == 1 and has_reference) or (if_citations_needed == 0 and not has_reference):
correct_predictions += 1
#logger.info("citation appropriateness finished")
# 2. 在需要引用的情况下才计算citation correctness
if need_citations and has_reference:#需要引用且引用了才考虑后两个指标
start_time = time.time()
need_citations_sentences += 1
# 2.(1):quote_corr
# If not directly rejected by citation format error, calculate the recall score
if joint_entail == -1:
# φ(premise, hypothesis)判断所有引用span的拼接是否entail模型的回答output
joint_entail = _run_nli_autoais(joint_span, target_sent)
entail += joint_entail
autoais_log[-1]["claim"]["quote_recall"] = joint_entail
#logger.info(f"citation recall finished, recall is {joint_entail}")
#2.(2):doc_corr
if joint_doc_entail == -1:
if method=='ALCE':
joint_doc_entail=joint_entail
elif method=='baseline':
joint_doc_entail=_run_nli_autoais(joint_passage, target_sent)
entail_doc+=joint_doc_entail
autoais_log[-1]["claim"]["doc_recall"] = joint_doc_entail
#print(f"the total time for two recall is {time.time() - start_time}")
# 4. 只有quote_corr=1(当该条数据,所有引用的拼接可以entail模型output的时候,)才计算引用粒度granularity
start_time=time.time()
if joint_entail:
all_clauses = []
clauses_first_three = []
# 遍历每个不同的this_span
#logger.info("calculating granularity")
if len(ref_span)>5:
print("Too many quotations!")
autoais_log[-1]["claim"]["granularity_score"] = None
autoais_log[-1]["claim"]["granularity_span"] = 0
else:
for idx, this_span in enumerate(ref_span):
#logger.info(f"this span is {this_span}")
# 分割引用跨度为子句
clauses = re.split(r'([,.])', this_span)
clauses = [clause.strip() for clause in clauses if
clause.strip() and any(char.isalnum() for char in clause.strip())]
all_clauses.append(clauses)
if idx<3:
clauses_first_three.append(clauses)
max_span_count = len(sum(all_clauses, []))
if max_span_count==0:
continue
doc_count = len(all_clauses)
min_comb_length=float('inf')
if method=="ALCE" and grain=="default":
gold_span_res=run_converge_2(clauses_first_three,target_sent)
else:
gold_span_res = run_converge_2(all_clauses, target_sent)
# gold结果
merged_gold_span_res = []
# 遍历嵌套列表,并将其中的子列表合并到大列表中
for sublist in gold_span_res:
merged_gold_span_res.extend(sublist)
autoais_log[-1]["claim"]["granularity_span"] = merged_gold_span_res
min_comb_length=len(merged_gold_span_res)
if min_comb_length!=float('inf'):
granularity_score = min_comb_length / max_span_count
granularity_list.append(granularity_score)
autoais_log[-1]["claim"]["granularity_score"] = granularity_score
print(autoais_log[-1]["claim"]["granularity_span"])
print(autoais_log[-1]["claim"]["granularity_score"])
print(f"the total time for granularity is {time.time() - start_time}")
else:#不需要引用或没有引用
autoais_log[-1]['claim']['recall']=None
autoais_log[-1]["claim"]["granularity_score"]=None
autoais_log[-1]["claim"]["granularity_span"]=None
sent_total += len(sents)
ais_scores_need.append(correct_predictions / len(sents)) #是否正确判断需不需要引用:正确判断/总
if need_citations_sentences!=0: # recall:能entail的/需要引用的
ais_scores.append(entail / need_citations_sentences)
ais_doc_scores.append(entail_doc / need_citations_sentences)
#过滤None
granularity_list = [value for value in granularity_list if value is not None]
#logger.info(f"skipped {skipped}")
#autoais_log.append(f"skipped {skipped}")
##print(autoais_log)
# print(ais_scores_need,ais_doc_scores,ais_scores,granularity_list)
return {
"citation_correct_prediction": 100 * np.mean(ais_scores_need),
"citation_doc_rec":100 * np.mean(ais_doc_scores),
"citation_quote_rec": 100 * np.mean(ais_scores),
"citation_granularity": 100 * np.mean(granularity_list)
} #autoais_log
def compute_qampari_f1(data, cot=False):
prec = []
rec = []
rec_top5 = []
f1 = []
f1_top5 = []
num_preds = []
for item in data:
if cot:
if ":" in item['output']:
o = ':'.join(item['output'].split(":")[1:]) # try to separate the COT part and the answer list part.
else:
o = ""
else:
o = item['output']
preds = [normalize_answer(x.strip()) for x in remove_citations(o).rstrip().rstrip(".").rstrip(",").split(",")]
preds = [p for p in preds if len(p) > 0] # delete empty answers
#print(preds)
num_preds.append(len(preds))
answers = [[normalize_answer(x) for x in ans] for ans in item['answers']]
flat_answers = [item for sublist in answers for item in sublist]
#print(flat_answers)
prec.append(sum([p in flat_answers for p in preds]) / len(preds) if len(preds) > 0 else 0)
#print(prec)
rec.append(sum([any([x in preds for x in a]) for a in answers]) / len(answers))
rec_top5.append(min(5, sum([any([x in preds for x in a]) for a in answers])) / min(5, len(answers)))
if (prec[-1] + rec[-1]) == 0:
f1.append(0)
else:
f1.append(2 * prec[-1] * rec[-1] / (prec[-1] + rec[-1]))
if (prec[-1] + rec_top5[-1]) == 0:
f1_top5.append(0)
else:
f1_top5.append(2 * prec[-1] * rec_top5[-1] / (prec[-1] + rec_top5[-1]))
return {
"num_preds": np.mean(num_preds),
"qampari_prec": 100 * np.mean(prec),
"qampari_rec": 100 * np.mean(rec),
"qampari_rec_top5": 100 * np.mean(rec_top5),
"qampari_f1": 100 * np.mean(f1),
"qampari_f1_top5": 100 * np.mean(f1_top5),
}
def compute_length(data):
return sum(len(item['output'].split(' '))for item in data)/(len(data))
if __name__ =='__main__':
#question = "Why did New York City try to ban food donations to the poor?"
#output = "New York City, under Mayor Michael Bloomberg's administration, tried to ban food donations to the poor mainly due to concerns about the nutritional content of the donated food. The city argued that it couldn't inspect donated food for its salt, fat, and fiber content, thereby making it hard to control the nutritional quality of the food served to its homeless population [1][2][3]. Critics of this policy, however, have claimed such an approach demonstrated excessive control over people's eating habits and lacked common sense [2]. Despite the ban, many organizations like the New York City Rescue Mission continued to serve needy citizens through food donations [5]."
#compute_qa(question,output,['',''])
pass
class Evaluator():
autoais_model_load = False
eval_criteria = {'test_pr':test_compute_autoais,'cite_recall_precision':compute_autoais, 'pr':compute_autoais,'qa':compute_qa,'rouge': compute_rouge_l,'claims':compute_claims, 'qampari':compute_qampari_f1,'length':compute_length,'str_em':compute_str_em,'grained':compute_autoais_grained,'cite_recall_precision_llm':lambda data: compute_autoais(data=data,entail_function=_run_llm_autoais),'mauve':compute_mauve}
def __init__(self,criteria= None, pipeline = None, ais_model = None) -> None:
self.eval_criteria = Evaluator.eval_criteria
self.pipeline = pipeline
self.get_data = {}
self.ais_model = ais_model
global ais_LLM
ais_LLM = ais_model
def set_eval(self, eval_c, **data_get_key):
if eval_c in self.get_data.keys():
print(f'Already set! {eval_c}')
return
if eval_c in self.eval_criteria.keys():
self.get_data[eval_c] = data_get_key
if eval_c == 'cite_recall_precision':
global autoais_model, autoais_tokenizer
if not Evaluator.autoais_model_load:
print('Initializing eval model for citation precision and recall...')
try:
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, device_map="auto")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
except:
print('Unable to load model from hub, trying to load from local path...')
autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, torch_dtype=torch.bfloat16, device_map="auto")
autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, use_fast=False)
Evaluator.autoais_model_load = True
if eval_c == 'qa':
global qa_pipeline
qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL)
else:
raise KeyError('eval_criteria unavailable')
def new_eval(self, name, eval_func, **data_get_key):
self.eval_criteria[name] = eval_func
self.set_eval(name, **data_get_key)
def __call__(self,data_from_pipeline= None):
result = {}
for criteria, get_data in self.get_data.items():
if not data_from_pipeline:
data_dict = {}
for k, v in get_data.items():
if isinstance(v,str):
if v == 'output':
data_dict[k] = ' '.join(self.pipeline.output)
elif v == 'doc_cache':
data_dict[k] = self.pipeline.doc_cache
else:
data_dict[k] = self.pipeline.dataset[self.pipeline.data_index][v]
else:
data_dict[k] = v
else:
data_dict = data_from_pipeline
eval_func = self.eval_criteria[criteria]
data = [data_dict]
result[criteria] = eval_func(data)
return result
class DefaultEvaluator(Evaluator):
def __init__(self, args = None, criteria= None, pipeline = None) -> None:
super().__init__(criteria,pipeline)
if args:
if hasattr(args,'str_em') and args.str_em:
self.set_eval('str_em',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
if hasattr(args,'pr') and args.pr:
self.set_eval('cite_recall_precision', output = PIPELINE_OUTPUT, docs = PIPELINE_DOC_CACHE, question = 'question')
if hasattr(args,'mauve') and args.mauve:
self.set_eval('mauve', output = PIPELINE_OUTPUT, answer = 'answer' ,question = 'question')
if hasattr(args,'rouge') and args.rouge:
if (hasattr(args, 'dataset') and 'qampari' not in args.dataset.lower()) or not hasattr(args, 'dataset'):
self.set_eval('rouge', output = PIPELINE_OUTPUT, answer = 'answer')
if hasattr(args,'qa') and args.qa:
if (hasattr(args, 'dataset') and 'asqa' in args.dataset.lower()) or not hasattr(args, 'dataset'):
self.set_eval('qa',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
if hasattr(args,'claims') and args.claims:
if (hasattr(args, 'dataset') and 'eli5' in args.dataset.lower()) or not hasattr(args, 'dataset'):
self.set_eval('claims',output = PIPELINE_OUTPUT, claims = 'claims')
if hasattr(args,'qampari') and args.qampari:
if (hasattr(args, 'dataset') and 'qampari' in args.dataset.lower()) or not hasattr(args, 'dataset'):
self.set_eval('qampari',output = PIPELINE_OUTPUT, answers = 'answers')
if hasattr(args,'length') and args.length:
self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT)
elif criteria:
if 'cite_recall_precision' in criteria:
self.set_eval('cite_recall_precision', output = PIPELINE_OUTPUT, docs = PIPELINE_DOC_CACHE, question = 'question')
if hasattr(args,'mauve') and args.mauve:
self.set_eval('mauve', output = PIPELINE_OUTPUT, answer = 'answer' ,question = 'question')
if 'rouge' in criteria:
self.set_eval('rouge', output = PIPELINE_OUTPUT, answer = 'answer')
if 'qa' in criteria:
self.set_eval('qa',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
if 'str_em' in criteria:
self.set_eval('str_em',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
if 'claims' in criteria:
self.set_eval('claims',output = PIPELINE_OUTPUT, claims = 'claims')
if 'qampari' in criteria:
self.set_eval('qampari',output = PIPELINE_OUTPUT, answers = 'answers')
if 'length' in criteria:
self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT)
else:
self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT) |