File size: 47,703 Bytes
96b6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
from nltk import sent_tokenize
import nltk
import re 
import random
import transformers
import numpy as np
from citekit.utils.utils import *
from rouge import Rouge
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import copy
import torch
from tqdm import tqdm
import sys
import logging
import random
from itertools import product,combinations
import time
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

PIPELINE_OUTPUT = 'output'
PIPELINE_DOC_CACHE = 'doc_cache'

global autoais_model, autoais_tokenizer
autoais_model = None
autoais_tokenizer = None
get_docs_by_index = lambda i,docs: docs[i] if i < len(docs) else None 
ais_LLM = None

QA_MODEL = "gaotianyu1350/roberta-large-squad"
AUTOAIS_MODEL = "google/t5_xxl_true_nli_mixture"
AUTOAIS_MODEL_ABSOLUTE = "/mnt/usercache/huggingface/t5_xxl_true_nli_mixture"

def get_cite(sent):
    return re.sub(r"\[\d+", "", re.sub(r" \[\d+", "", sent)).replace(" |", "").replace("]", ""),[int(r[1:]) - 1 for r in re.findall(r"\[\d+", sent)]


def entail(premise, claim):

    """
    Run inference for assessing AIS between a premise and hypothesis.
    Adapted from https://github.com/google-research-datasets/Attributed-QA/blob/main/evaluation.py
    """
    global autoais_model, autoais_tokenizer
    input_text = "premise: {} hypothesis: {}".format(premise, claim)
    input_ids = autoais_tokenizer(input_text, return_tensors="pt").input_ids.to(autoais_model.device)
    with torch.inference_mode():
        outputs = autoais_model.generate(input_ids, max_new_tokens=10)
    result = autoais_tokenizer.decode(outputs[0], skip_special_tokens=True)
    inference = 1 if result == "1" else 0
    return inference

def load_auto_ais():
    global autoais_model, autoais_tokenizer
    print('Initializing eval model for citation precision and recall...') 
    try:
        autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, device_map="auto")
        autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
        
    except:
        print('Unable to load model from hub, trying to load from local path...')
        autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, torch_dtype=torch.bfloat16, device_map="auto")
        autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, use_fast=False)
    print('Done!')

def compute_mauve(data):
    """Compute Mauve score."""

    logger.info("Computing MAUVE...")
    human_data = []
    model_data = []
    for item in data:
        # Remove ending punctuations
        # Remove any new lines
        # Truncate by 100 words
        human_data.append(
            ' '.join((item['question'] + " " + item['answer'].strip()).split()[:100]).rstrip(string.punctuation))
        model_data.append(
            ' '.join((item['question'] + " " + item['output'].strip()).split()[:100]).rstrip(string.punctuation))

    import mauve
    out = mauve.compute_mauve(
        p_text=human_data,
        q_text=model_data,
        device_id=0,
        max_text_length=512,
        verbose=True,
        batch_size=8,
        featurize_model_name="gpt2-large"
    )
    return out.mauve * 100


def compute_rouge_l(data):
    total = len(data)
    res = {
                "r": 0.0,
                "p": 0.0,
                "f": 0.0
            }
    for item in data:
        if item['output'] and item['answer']:
            rouge = Rouge()
            scores = rouge.get_scores(item['output'], item['answer'])
            res['r'] += scores[0]['rouge-l']['r']
            res['p'] += scores[0]['rouge-l']['p']
            res['f'] += scores[0]['rouge-l']['f']
        else:
            print('Warning: no hypothesis or references')
    res['r'] /= total
    res['p'] /= total
    res['f'] /= total

    return res
    
def compute_qa(question, output, short_answers, qa_pipeline=None):
    """Compute QA-based accuracy.
    Args:
        
    Returns:
        QA metrics (QA-EM, QA-F1, QA-Hit)
    """

    # Load model
    if not qa_pipeline:
        qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL, device='mps')

    # Get prediction
    em, f1, bins = 0,0,0
    context = output if len(output) > 0 else " "
    result = qa_pipeline(question=question, context=context, handle_impossible_answer=True)
    loc_counter, loc_em, loc_f1 = 0, 0, 0
    print(result)
    prediction = result["answer"]

    loc_em = max([compute_exact(a, prediction) for a in short_answers])
    loc_f1 = max([compute_f1(a, prediction) for a in short_answers])
    loc_counter += 1

    em= loc_em / loc_counter
    f1= loc_f1 / loc_counter 
    bins = int(loc_em == loc_counter)
    return em, f1, bins

def compute_qa(data):
    """Compute QA-based accuracy.
    Args:
        data: requires filed `qa_pairs/short_answers` and `output`
    Returns:
        QA metrics (QA-EM, QA-F1, QA-Hit)
    """

    if 'qa_pairs' not in data[0] or data[0]['qa_pairs'] is None:
        #logger.warn("Warning: no QA pairs found in data")
        return {
            'QA-EM': 0,
            'QA-F1': 0,
            'QA-Hit': 0,
        }

    # Load model
    #logger.info("Loading the RoBERTa-large SQuAD model for QA-based accuracy...")
    global qa_pipeline
    if not qa_pipeline:
        qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL)
    #logger.info("Done")

    # Get prediction
    #logger.info("Computing the QA-based accuracy...")
    em, f1, bins = [], [], []
    for item in tqdm(data):
        question = [qa_pair['question'] for qa_pair in item['qa_pairs']]
        context = item['output'] if len(item['output']) > 0 else " "
        results = qa_pipeline(question=question, context=context, handle_impossible_answer=True)
        loc_counter, loc_em, loc_f1 = 0, 0, 0

        for idx, res in enumerate(results):
            answers = item["qa_pairs"][idx]["short_answers"]
            prediction = res["answer"]

            loc_em += max([compute_exact(a, prediction) for a in answers])
            loc_f1 += max([compute_f1(a, prediction) for a in answers])
            loc_counter += 1

        em.append(loc_em / loc_counter)
        f1.append(loc_f1 / loc_counter)
        bins.append(loc_em == loc_counter)

    return {
        'QA-EM': 100 * np.mean(em),
        'QA-F1': 100 * np.mean(f1),
        'QA-Hit': 100 * np.mean(bins)
    }


def cite_pr(sent_with_cite, docs = None, get_docs = get_docs_by_index, get_cite = get_cite, max_cite= None,rich_return = False):
    """
    : sent_with_cite: ONE sentence with citation like [1][2][3]
    : get_docs: by default like [1][2], get ids
    : docs: List, all the COMPLETE documents with TITLE

    : return 
        number of citations, integer
        recall (0 or 1)
        precision (number of relevent documents)

        optional;
            multi_cite
            mcite_support
            mcite_overcite
    """
    if rich_return:
        raise NotImplementedError

    result = {'num_cites': 0,'recall':0,'precision':0,'multi_cite':0,'mcite_support' :0,'mcite_overcite':0}
    sent, cites= get_cite(sent_with_cite)

    if not cites:
        return (0, 0, 0) if not rich_return else result # no citations
    if max_cite:
        cites = cites[:max_cite]
    num_cites = len(cites)
    result['num_cites'] = num_cites

    refs = [get_docs(cite, docs) for cite in cites]
    if None in refs:
        return (num_cites, 0, 0) if not rich_return else result# wrong citation(s)
    
    # recall
    recall = entail(premise=''.join(refs),claim=sent)
    result['recall'] = recall

    # precision
    precision = 0
    if num_cites == 1:
        precision = recall
    else:
        for idx, ref in enumerate(refs):
            if entail(premise=ref,claim=sent):
                precision += 1
            else:
                if not entail(premise=''.join([refs[i] for i in range(len(refs)) if i != idx]), claim = sent):
                    precision += 1
                elif recall:
                    result['mcite_overcite'] = 1
    result['precision'] = precision
    
    #other 
    if num_cites > 1:
        result['multi_cite'] = 1
        if recall:
            result['mcite_support'] = 1
    

    return (num_cites, recall, precision) if not rich_return else result


def cite_pr_answer(answer, docs = None, get_docs = get_docs_by_index, get_cite = get_cite, max_cite= None,rich_return = False):
    epsilon = 1e-8
    num_c = 0
    recall = 0
    precision = 0
    sents = sent_tokenize(answer)
    for sent in sents:
        c,r,p = cite_pr(sent,get_docs=get_docs,docs=docs,get_cite=get_cite,max_cite=max_cite,rich_return=rich_return)
        num_c += c
        recall += r
        precision += p
    # diveded by Zero!
    return recall/(len(sents)+ epsilon), precision/(num_c+epsilon)


def _run_nli_autoais(passage, claim, test = False):
    """
    Run inference for assessing AIS between a premise and hypothesis.
    Adapted from https://github.com/google-research-datasets/Attributed-QA/blob/main/evaluation.py
    """
    if not test:
        global autoais_model, autoais_tokenizer
        if not autoais_model:
            load_auto_ais()
        input_text = "premise: {} hypothesis: {}".format(passage, claim)
        input_ids = autoais_tokenizer(input_text, return_tensors="pt").input_ids.to(autoais_model.device)
        with torch.inference_mode():
            outputs = autoais_model.generate(input_ids, max_new_tokens=10)
        result = autoais_tokenizer.decode(outputs[0], skip_special_tokens=True)
        inference = 1 if result == "1" else 0
        return inference
    else:
        res = random.randint(0,1)

    return res

def _run_llm_autoais(passage, claim):
    global ais_LLM
    assert(ais_LLM)
    return int(ais_LLM.generate(premise = passage, claim = claim))

def test_compute_autoais(data):
    print(data[0]['docs'][:5])
    print(data[0]['output'][:5])
    return {
        "citation_rec": random.randint(0,100),
        "citation_prec": random.randint(0,100),
    }

def compute_autoais(data,
                    decontext=False,
                    concat=False,
                    qampari=False,
                    at_most_sents = 3,
                    at_most_citations=3,
                    entail_function = _run_nli_autoais):
    """
    Compute AutoAIS score.

    Args:
        data: requires field `output` and `docs`
              - docs should be a list of items with fields `title` and `text` (or `phrase` and `sent` for QA-extracted docs)
        citation: check citations and use the corresponding references.
        decontext: decontextualize the output
    """

    global autoais_model, autoais_tokenizer


    ais_scores = []
    ais_scores_prec = []

    sent_total = 0
    sent_mcite = 0
    sent_mcite_support = 0
    sent_mcite_overcite = 0
    autoais_log = []
    for item in tqdm(data):
        # Get sentences by using NLTK
        if qampari:
            print('now qampari...')
            sents = [item['question'] + " " + x.strip() for x in
                     item['output'].rstrip().rstrip(".").rstrip(",").split(",")]
        else:
            sents = sent_tokenize(item['output'])[:at_most_sents]
        if len(sents) == 0:
            ais_scores.append(0.0)
            ais_scores_prec.append(0.0)  # len(sents))
            continue

        target_sents = [remove_citations(sent).strip() for sent in sents]

        entail = 0
        entail_prec = 0
        total_citations = 0
        for sent_id, sent in enumerate(sents):
            target_sent = target_sents[sent_id]  # Citation removed and (if opted for) decontextualized
            joint_entail = -1  # Undecided

            # Find references
            #ref = [int(r[1:]) - 1 for r in re.findall(r"\[\d+", sent)]  # In text citation id starts from 1
            matches = re.findall(r"\[(\d+(?:,\s*\d+)*)\]", sent)
            ref = [int(num)-1 for match in matches for num in match.replace(' ', '').split(',')]
            if len(ref) == 0:
                # No citations
                joint_entail = 0
            elif any([ref_id >= len(item['docs']) for ref_id in ref]):
                # Citations out of range
                joint_entail = 0
            else:
                if at_most_citations is not None:
                    ref = ref[:at_most_citations]
                total_citations += len(ref)
                joint_passage = '\n'.join([(item['docs'][psgs_id]) for psgs_id in ref])

            # If not directly rejected by citation format error, calculate the recall score
            if joint_entail == -1:
                joint_entail = entail_function(joint_passage, target_sent)
                autoais_log.append({
                    #"question": item['question'],
                    "output": item['output'],
                    "claim": sent,
                    "passage": [joint_passage],
                    "model_type": "NLI",
                    "model_output": joint_entail,
                })

            entail += joint_entail
            if len(ref) > 1:
                sent_mcite += 1

            # calculate the precision score if applicable
            if joint_entail and len(ref) > 1:
                sent_mcite_support += 1
                # Precision check: did the model cite any unnecessary documents?
                for psgs_id in ref:
                    # condition A
                    passage = item['docs'][psgs_id]
                    nli_result = entail_function(passage, target_sent)

                    # condition B
                    if not nli_result:
                        subset_exclude = copy.deepcopy(ref)
                        subset_exclude.remove(psgs_id)
                        passage = '\n'.join([item['docs'][pid] for pid in subset_exclude])
                        nli_result =entail_function(passage, target_sent)
                        if nli_result:  # psgs_id is not necessary
                            flag = 0
                            sent_mcite_overcite += 1
                        else:
                            entail_prec += 1
                    else:
                        entail_prec += 1
            else:
                entail_prec += joint_entail
        sent_total += len(sents)
        ais_scores.append(entail / len(sents))
        ais_scores_prec.append(entail_prec / total_citations if total_citations > 0 else 0)  # len(sents))

    if sent_mcite > 0 and sent_mcite_support > 0:
        print(
            "Among all sentences, %.2f%% have multiple citations, among which %.2f%% are supported by the joint set, among which %.2f%% overcite." % (
                100 * sent_mcite / sent_total,
                100 * sent_mcite_support / sent_mcite,
                100 * sent_mcite_overcite / sent_mcite_support
            ))

    return {
        "citation_rec": 100 * np.mean(ais_scores),
        "citation_prec": 100 * np.mean(ais_scores_prec),
    }

def compute_claims_test(data):
    print(data[0]['claims'])
    print(data[0][PIPELINE_OUTPUT])
    return random.randint(1,100)

def compute_claims(data):
    global autoais_model, autoais_tokenizer
    if autoais_model is None:
        #logger.info("Loading AutoAIS model...")
        # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
        autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
                                                              device_map="auto")
        # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
        autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
    #logger.info("Computing claims...")
    scores = []
    for item in tqdm(data):
        normalized_output = remove_citations(item['output'])
        entail = 0
        claims = item["claims"]
        for claim in claims:
            entail += _run_nli_autoais(normalized_output, claim)
        scores.append(entail / len(claims))
    return 100 * np.mean(scores)


#citation appropriateness
def check_if_citations_needed(passages, answer, grain):

    def _format_document(doc):
        """Format document for AutoAIS.

        if "sent" in doc:
            # QA-extracted docs
            return "Title: %s\n%s" % (doc['title'], doc['sent'])
        else:
            return "Title: %s\n%s" % (doc['title'], doc['text'])
        """
        return doc

    global autoais_model, autoais_tokenizer
    if autoais_model is None and False:
        #logger.info("Loading AutoAIS model...")
        # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
        autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
                                                              device_map="auto")
        # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
        autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)

    if grain=="over_fine" or grain=="more_over_fine":
        num_passages = len(passages)
        passages_per_chunk = num_passages // 5  # Divide passages evenly into 5 chunks
        remainder = num_passages % 5  # Handle remaining passages
        passages_five=[]
        start_idx = 0
        for i in range(5):
            end_idx = start_idx + passages_per_chunk
            if remainder > 0:
                end_idx += 1
                remainder -= 1
            chunk_passages = passages[start_idx:end_idx]
            passages_five.append('\n'.join([_format_document(p) for p in chunk_passages]))
            start_idx = end_idx
        passages=passages_five
        combinations_3 = combinations(passages, 3)  # 获取所有三个passage的组合
        for combination in combinations_3:
            joint_passage = '\n'.join(
                [passage for passage in combination])  # 将三个passage连接为一个字符串,并保留格式
            entail = _run_nli_autoais(joint_passage, answer)
            if entail == 1:
                return 1
        return 0

    else:
        if len(passages)>=3:#正常粒度
            combinations_3 = combinations(passages, 3)
            for combination in combinations_3:
                joint_passage = '\n'.join(
                    [_format_document(passage) for passage in combination])
                entail = _run_nli_autoais(joint_passage, answer)
                if entail == 1:
                    return 1
            return 0
        else:#粗粒度
            joint_passage = '\n'.join(
                [_format_document(passage) for passage in passages])
            entail = _run_nli_autoais(joint_passage, answer)
            if entail == 1:
                return 1
            else:
                return 0


#citaion granularity
def find_permutations(n, m):
    '''
    :param n:  最大数量总和
    :param m: 位长度
    :return:
    '''
    # Generate all possible sequences of length m
    all_sequences = list(product(range(n + 1), repeat=m))
    #print('all_sequences', all_sequences)

    # Filter sequences where the sum of digits equals n
    valid_sequences = [seq for seq in all_sequences if sum(seq) == n]
    return valid_sequences


def get_subspans(list_span, span_count):
    list_subspan = []
    for i in range(0, len(list_span) - span_count + 1):
        list_subspan.append(list_span[i: i + span_count])

    return list_subspan


def get_all_span_comb(list_list_span, target_span_count=-1):
    if target_span_count == -1: # 所有子集
        max_span_count = len(sum(list_list_span, []))
        doc_count = len(list_list_span)
        list_span_comb_all = []
        for span_count in range(1, max_span_count + 1):
            list_comb = find_permutations(span_count, doc_count)#给定数量的子串在文本中的所有可能组合

            list_span_comb = [] # 最终当前长度的所有可能组合
            for comb in list_comb:
                list_list_subspan = []

                for idx_doc, span_count_doc in enumerate(comb):
                    list_subspan = get_subspans(list_list_span[idx_doc], span_count_doc)
                    if len(list_subspan) == 0:
                        list_list_subspan = None
                        break
                    list_list_subspan.append(list_subspan)

                if list_list_subspan:
                    list_span_comb_cur = [sum(list(combination), [])  for combination in product(*list_list_subspan)]
                    list_span_comb_cur = list(set([tuple(span_comb) for span_comb in list_span_comb_cur]))

                    list_span_comb += list_span_comb_cur
            list_span_comb_all += list_span_comb
        list_span_comb_all = set(list_span_comb_all)
    else: # 当前长度的组合
        doc_count = len(list_list_span)
        list_comb = find_permutations(target_span_count, doc_count)

        list_span_comb = []  # 最终当前长度的所有可能组合
        for comb in list_comb:
            list_list_subspan = []

            for idx_doc, span_count_doc in enumerate(comb):
                list_subspan = get_subspans(list_list_span[idx_doc], span_count_doc)
                if len(list_subspan) == 0:
                    list_list_subspan = None
                    break
                list_list_subspan.append(list_subspan)

            if list_list_subspan:
                list_span_comb_cur = [combination for combination in product(*list_list_subspan)]
                for idx in range(len(list_span_comb_cur)):
                    list_span_comb_cur[idx] = tuple([tuple(span_comb) for span_comb in list_span_comb_cur[idx]])

                list_span_comb += list_span_comb_cur
        list_span_comb_all = list_span_comb
        list_span_comb_all = set(list_span_comb_all)
    return list_span_comb_all


def run_converge_2(list_list_span=None, sentence=None):
    '''
    基于假设:更长的text不能蕴含,则其任何子串都不能蕴含
    span数量递减(提供更多的剪枝选项)
    最终gold可能有一个span的误差
    '''
    ######
    #print('origin nli count', len(get_all_span_comb(list_list_span, target_span_count=-1)))#给定文本的所有可能的子串组合
    max_span_count = len(sum(list_list_span, [])) # span总数

    set_comb_hash = set([])

    ### span数量二分
    nli_count = 0
    skip_count = 0
    list_list_span_gold = copy.copy(list_list_span) # 当前能够精准蕴含的span

    span_count_min, span_count_max = 1, max_span_count
    start_time=time.time()
    timeout=300
    while span_count_min < span_count_max:#每次迭代中不断寻找更小的子串组合
        span_count_cur = span_count_max - 1
        flag_find = False
        if time.time() - start_time > timeout:
            print('timeout!')
            list_list_span_gold=[]
            break
        ### 存在可蕴含,继续找更少的span
        ### 不存在可蕴含,继续找更多的span
        # 长度为span_count_max - 1的所有可能的子串组合
        set_comb_cur = get_all_span_comb(list_list_span, target_span_count=span_count_cur)

        list_comb_cur = list(set_comb_cur)
        random.shuffle(list_comb_cur)
        for comb in list_comb_cur:
            list_list_span_cur = [list(t) for t in comb]
            list_span_cur = sum(list_list_span_cur, [])
            str_text = ' '.join(list_span_cur) # TODO: 统一字符串化的方式

            if hash(str_text) in set_comb_hash:
                skip_count += 1
                continue

            #### ⚠️ 注意在这里替换nli函数
            nli_label = _run_nli_autoais(str_text, sentence) # TODO: nli label function
            nli_count += 1

            if nli_label == 1: # 只要存在可蕴含,直接继续找更少的span
                list_list_span_gold = copy.copy(list_list_span_cur)
                span_count_max = span_count_cur#更新span数量上限
                flag_find = True
                # print(f"find nli!, nli_count: {nli_count}, skip_count: {skip_count}, len(set_comb_hash): {len(set_comb_hash)}", )
                break
            else: # 不能蕴含,剪枝所有子集
                set_comb_cur_del = get_all_span_comb(list_list_span_cur, target_span_count=-1)
                set_comb_hash_cur = set([hash(' '.join(list(tuple_comb_))) for tuple_comb_ in set_comb_cur_del]) # TODO: 统一字符串化的方式

                set_comb_hash |= set_comb_hash_cur
        if flag_find == False:
            print(f"CAN'T find nli!, nli_count: {nli_count}, skip_count: {skip_count}, len(set_comb_hash): {len(set_comb_hash)}", )
            break
    span_count_gold = span_count_max # gold的span数量
    print('len(set_comb_del)', len(set_comb_hash))
    print('nli_count', nli_count, 'skip_count', skip_count, 'span_count_gold', span_count_gold)
    return list_list_span_gold


def compute_autoais_grained(data,
                    at_most_citations=3,method='ALCE',grain='default'):

    """
    Compute AutoAIS score.

    Args:
        data: requires field `output` and `docs`
              - docs should be a list of items with fields `title` and `text` (or `phrase` and `sent` for QA-extracted docs)
        citation: check citations and use the corresponding references.
        decontext: decontextualize the output
    """
    global autoais_model, autoais_tokenizer
    if autoais_model is None and False:
        #logger.info("Loading AutoAIS model...")
        # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto")
        autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16,
                                                              device_map="auto")
        # autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, max_memory=get_max_memory(), device_map="auto",offload_folder= "/data/hongbang/zsf/projects/ALCE/ALCE/model/t5_xxl_true_nli_mixture/offload1")
        autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
    def _format_document(doc):

        """Format document for AutoAIS."""
        if isinstance(doc, dict):
            if "sent" in doc:
                # QA-extracted docs
                return "Title: %s\n%s" % (doc['title'], doc['sent'])
            else:
                return "Title: %s\n%s" % (doc['title'], doc['text'])
        elif isinstance(doc,str):
            return doc


    #logger.info(f"Running AutoAIS...")

    ais_scores_need = []  # 是否需要引用
    ais_scores = []  # quote_recall
    ais_doc_scores=[]#doc_recall

    sent_total = 0

    autoais_log = []
    granularity_list = []
    skipped =0
    for item in tqdm(data):
        output = item['output']

        if method=='baseline':
            model_answer=item['output_parse']['answer']
            answer = ''
            reference = {}
            span_contents = {}
            if not model_answer["text"].endswith("."):
                model_answer["text"] += "."
            answer += " " + model_answer["text"]
            spans = model_answer['reference']
            for span in spans:
                match = re.match(r'^(\d+)\.', span)
                if match:
                    span_number = match.group(1)
                    span_content = span.split('. ', 1)[1].strip()  # 获取1. 后面的内容
                    span_contents[span_number] = span_content
            reference.update(span_contents)

            item['output_answer'] = answer.strip()
            item['output_ref_span'] = reference
            output = item['output_answer']

        elif method=='ALCE':
            # 匹配 According to Document
            pattern_doc = r"According to Document \[(\d+)\]"
            # 匹配 (Title: Godfrey Chitalu)
            pattern_title = r"\(Title: [^\)]+\)"

            output = re.sub(pattern_doc, r"[\1]", output)
            output = re.sub(pattern_title, "", output)
            output=output.strip().split("\n")[0]
            output=output.replace("<|im_end|>", "")
        # Get sentences by using NLTK
        sents = sent_tokenize(output)[:3]
        if len(sents) == 0:
            continue

        target_sents = [remove_citations(sent).strip() for sent in sents]
        output_ref_span = item.get('output_ref_span', {})
        # sent_joint_passage = '\n'.join([_format_document(doc) for doc in item['docs']])

        entail = 0
        entail_doc=0
        total_citations = 0
        need_citations_sentences = 0  # 一个回答中需要引用的句子数量
        correct_predictions = 0  # 新增:记录正确的预测是否需要引用的子句数量

        for sent_id, sent in enumerate(sents):
            target_sent = target_sents[sent_id]  # Citation removed and (if opted for) decontextualized
            joint_entail = -1  # Undecided
            joint_doc_entail=-1

            # 1. appropriatness
            # 每句话是否需要引用
            need_citations = check_if_citations_needed(item['docs'], target_sent,grain)


            if method=='baseline':
                # Find references number
                ref_mark = [int(r[1:]) for r in re.findall(r"\{\d+", sent)]
                # 引用的span(拼接)match document
                ref, ref_span = match_document(ref_mark, output_ref_span)
                #logger.info(f"For `{target_sent}`, find citations {ref}")
                ref_id = [x -1 for x in ref]
                processed_refs = set()
                ref_passage = []
                for psgs_id in ref_id:
                    if 0 <= psgs_id < len(item['docs']) and psgs_id not in processed_refs:
                        ref_passage.append(_format_document(item['docs'][psgs_id]))
                        processed_refs.add(psgs_id)
                    elif psgs_id in processed_refs:
                        print("Warning: psgs_id already processed:", psgs_id + 1)
                    else:
                        print("Error: psgs_id out of range:", psgs_id+1)

                joint_span = '\n'.join(ref_span)
                joint_passage = '\n'.join(ref_passage)

            elif method=='ALCE':
                ref = list(set([int(r[1:]) for r in re.findall(r"\[\d+", sent)]))
                #logger.info(f"For `{target_sent}`, find citations {ref}")
                ref_id=list(set([int(r[1:])-1 for r in re.findall(r"\[\d+", sent)]))
                processed_refs = set()
                ref_passage = []
                for psgs_id in ref_id:
                    if 0 <= psgs_id < len(item['docs']) and psgs_id not in processed_refs:
                        ref_passage.append(_format_document(item['docs'][psgs_id]))
                        processed_refs.add(psgs_id)
                    elif psgs_id in processed_refs:
                        print("Warning: psgs_id already processed:", psgs_id+1)
                    else:
                        print("Error: psgs_id out of range:", psgs_id+1)
                ref_span=ref_passage
                joint_passage = '\n'.join(ref_passage)
                joint_span=joint_passage


            autoais_log.append({
                "question": item['question'],
                "output_answer": item['output'],
                "docs": item['docs'],
                "claim": {
                    "sentence": sent,
                    "if_citations_needed": need_citations,
                    "has_reference": ref,
                    "doc_recall": None,
                    "quote_recall": None,
                    "granularity_score":None,
                    "granularity_span":None
                }
            })

            if len(ref) == 0:
                # No citations
                joint_entail = 0
                joint_doc_entail=0
            elif any([ref_id > len(item['docs']) for ref_id in ref]):
                # Citations out of range
                joint_entail = 0
                joint_doc_entail=0
            else:
                if at_most_citations is not None:
                    ref = ref[:at_most_citations]
                total_citations += len(ref)

            # 更新正确预测是否需要引用的数量
            if_citations_needed = autoais_log[-1]["claim"]["if_citations_needed"]
            has_reference = autoais_log[-1]["claim"]["has_reference"]
            if (if_citations_needed == 1 and has_reference) or (if_citations_needed == 0 and not has_reference):
                correct_predictions += 1
            #logger.info("citation appropriateness finished")

            # 2. 在需要引用的情况下才计算citation correctness
            if need_citations and has_reference:#需要引用且引用了才考虑后两个指标
                start_time = time.time()
                need_citations_sentences += 1
                # 2.(1):quote_corr
                # If not directly rejected by citation format error, calculate the recall score
                if joint_entail == -1:
                    # φ(premise, hypothesis)判断所有引用span的拼接是否entail模型的回答output
                    joint_entail = _run_nli_autoais(joint_span, target_sent)
                entail += joint_entail
                autoais_log[-1]["claim"]["quote_recall"] = joint_entail
                #logger.info(f"citation recall finished, recall is {joint_entail}")

                #2.(2):doc_corr
                if joint_doc_entail == -1:
                    if method=='ALCE':
                        joint_doc_entail=joint_entail
                    elif method=='baseline':
                        joint_doc_entail=_run_nli_autoais(joint_passage, target_sent)
                entail_doc+=joint_doc_entail
                autoais_log[-1]["claim"]["doc_recall"] = joint_doc_entail
                #print(f"the total time for two recall is {time.time() - start_time}")



                # 4. 只有quote_corr=1(当该条数据,所有引用的拼接可以entail模型output的时候,)才计算引用粒度granularity
                start_time=time.time()
                if joint_entail:
                    all_clauses = []
                    clauses_first_three = []
                    # 遍历每个不同的this_span
                    #logger.info("calculating granularity")
                    if len(ref_span)>5:
                        print("Too many quotations!")
                        autoais_log[-1]["claim"]["granularity_score"] = None
                        autoais_log[-1]["claim"]["granularity_span"] = 0
                    else:
                        for idx, this_span in enumerate(ref_span):
                            #logger.info(f"this span is {this_span}")
                            # 分割引用跨度为子句
                            clauses = re.split(r'([,.])', this_span)
                            clauses = [clause.strip() for clause in clauses if
                                       clause.strip() and any(char.isalnum() for char in clause.strip())]
                            all_clauses.append(clauses)
                            if idx<3:
                                clauses_first_three.append(clauses)

                        max_span_count = len(sum(all_clauses, []))
                        if max_span_count==0:
                            continue
                        doc_count = len(all_clauses)
                        min_comb_length=float('inf')

                        if method=="ALCE" and grain=="default":
                            gold_span_res=run_converge_2(clauses_first_three,target_sent)
                        else:
                            gold_span_res = run_converge_2(all_clauses, target_sent)
                        # gold结果
                        merged_gold_span_res = []

                        # 遍历嵌套列表,并将其中的子列表合并到大列表中
                        for sublist in gold_span_res:
                            merged_gold_span_res.extend(sublist)
                        autoais_log[-1]["claim"]["granularity_span"] = merged_gold_span_res
                        min_comb_length=len(merged_gold_span_res)
                        if min_comb_length!=float('inf'):
                            granularity_score = min_comb_length / max_span_count
                            granularity_list.append(granularity_score)
                            autoais_log[-1]["claim"]["granularity_score"] = granularity_score


                print(autoais_log[-1]["claim"]["granularity_span"])
                print(autoais_log[-1]["claim"]["granularity_score"])
                print(f"the total time for granularity is {time.time() - start_time}")
            else:#不需要引用或没有引用
                autoais_log[-1]['claim']['recall']=None
                autoais_log[-1]["claim"]["granularity_score"]=None
                autoais_log[-1]["claim"]["granularity_span"]=None


        sent_total += len(sents)
        ais_scores_need.append(correct_predictions / len(sents)) #是否正确判断需不需要引用:正确判断/总
        if need_citations_sentences!=0: # recall:能entail的/需要引用的
            ais_scores.append(entail / need_citations_sentences)
            ais_doc_scores.append(entail_doc / need_citations_sentences)

        #过滤None
        granularity_list = [value for value in granularity_list if value is not None]

    #logger.info(f"skipped {skipped}")
    #autoais_log.append(f"skipped {skipped}")
    ##print(autoais_log)
    # print(ais_scores_need,ais_doc_scores,ais_scores,granularity_list)
    return {
        "citation_correct_prediction": 100 * np.mean(ais_scores_need),
        "citation_doc_rec":100 * np.mean(ais_doc_scores),
        "citation_quote_rec": 100 * np.mean(ais_scores),
        "citation_granularity": 100 * np.mean(granularity_list)
    } #autoais_log

def compute_qampari_f1(data, cot=False):
    prec = []
    rec = []
    rec_top5 = []
    f1 = []
    f1_top5 = []

    num_preds = []
    for item in data:
        if cot:
            if ":" in item['output']:
                o = ':'.join(item['output'].split(":")[1:])  # try to separate the COT part and the answer list part.
            else:
                o = ""
        else:
            o = item['output']
        preds = [normalize_answer(x.strip()) for x in remove_citations(o).rstrip().rstrip(".").rstrip(",").split(",")]
        preds = [p for p in preds if len(p) > 0]  # delete empty answers
        #print(preds)
        num_preds.append(len(preds))
        answers = [[normalize_answer(x) for x in ans] for ans in item['answers']]
        flat_answers = [item for sublist in answers for item in sublist]
        #print(flat_answers)
        prec.append(sum([p in flat_answers for p in preds]) / len(preds) if len(preds) > 0 else 0)
        #print(prec)
        rec.append(sum([any([x in preds for x in a]) for a in answers]) / len(answers))
        rec_top5.append(min(5, sum([any([x in preds for x in a]) for a in answers])) / min(5, len(answers)))
        if (prec[-1] + rec[-1]) == 0:
            f1.append(0)
        else:
            f1.append(2 * prec[-1] * rec[-1] / (prec[-1] + rec[-1]))
        if (prec[-1] + rec_top5[-1]) == 0:
            f1_top5.append(0)
        else:
            f1_top5.append(2 * prec[-1] * rec_top5[-1] / (prec[-1] + rec_top5[-1]))

    return {
        "num_preds": np.mean(num_preds),
        "qampari_prec": 100 * np.mean(prec),
        "qampari_rec": 100 * np.mean(rec),
        "qampari_rec_top5": 100 * np.mean(rec_top5),
        "qampari_f1": 100 * np.mean(f1),
        "qampari_f1_top5": 100 * np.mean(f1_top5),
    }

def compute_length(data):
    return sum(len(item['output'].split(' '))for item in data)/(len(data))
    

if __name__ =='__main__':
    #question = "Why did New York City try to ban food donations to the poor?"
    #output = "New York City, under Mayor Michael Bloomberg's administration, tried to ban food donations to the poor mainly due to concerns about the nutritional content of the donated food. The city argued that it couldn't inspect donated food for its salt, fat, and fiber content, thereby making it hard to control the nutritional quality of the food served to its homeless population [1][2][3]. Critics of this policy, however, have claimed such an approach demonstrated excessive control over people's eating habits and lacked common sense [2]. Despite the ban, many organizations like the New York City Rescue Mission continued to serve needy citizens through food donations [5]."
    #compute_qa(question,output,['',''])
    pass



class Evaluator():
    autoais_model_load = False

    eval_criteria = {'test_pr':test_compute_autoais,'cite_recall_precision':compute_autoais, 'pr':compute_autoais,'qa':compute_qa,'rouge': compute_rouge_l,'claims':compute_claims, 'qampari':compute_qampari_f1,'length':compute_length,'str_em':compute_str_em,'grained':compute_autoais_grained,'cite_recall_precision_llm':lambda data: compute_autoais(data=data,entail_function=_run_llm_autoais),'mauve':compute_mauve}
    def __init__(self,criteria= None, pipeline = None, ais_model = None) -> None:
        self.eval_criteria = Evaluator.eval_criteria
        self.pipeline = pipeline
        self.get_data = {}
        self.ais_model = ais_model
        global ais_LLM
        ais_LLM = ais_model

            

    def set_eval(self, eval_c, **data_get_key):
        if eval_c in self.get_data.keys():
            print(f'Already set! {eval_c}')
            return 
        if eval_c in self.eval_criteria.keys():
            self.get_data[eval_c] = data_get_key
            if eval_c == 'cite_recall_precision':
                global autoais_model, autoais_tokenizer
                if not Evaluator.autoais_model_load:
                    print('Initializing eval model for citation precision and recall...') 
                    try:
                        autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL, torch_dtype=torch.bfloat16, device_map="auto")
                        autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL, use_fast=False)
                        
                    except:
                        print('Unable to load model from hub, trying to load from local path...')
                        autoais_model = AutoModelForSeq2SeqLM.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, torch_dtype=torch.bfloat16, device_map="auto")
                        autoais_tokenizer = AutoTokenizer.from_pretrained(AUTOAIS_MODEL_ABSOLUTE, use_fast=False)
                    Evaluator.autoais_model_load = True
            if eval_c == 'qa':
                global qa_pipeline
                qa_pipeline = transformers.pipeline("question-answering", model=QA_MODEL)

        else:
            raise KeyError('eval_criteria unavailable')
    
    def new_eval(self, name, eval_func, **data_get_key):
        self.eval_criteria[name] = eval_func
        self.set_eval(name, **data_get_key)

    def __call__(self,data_from_pipeline= None):
        result = {}
        
        for criteria, get_data in self.get_data.items():
            if not data_from_pipeline:
                data_dict = {}
                for k, v in get_data.items():
                    if isinstance(v,str):
                        if v == 'output':
                            data_dict[k] = ' '.join(self.pipeline.output)
                        elif v == 'doc_cache':
                            data_dict[k] = self.pipeline.doc_cache
                        else:
                            data_dict[k] = self.pipeline.dataset[self.pipeline.data_index][v]
                    else:
                        data_dict[k] = v
            else:
                data_dict = data_from_pipeline

            eval_func = self.eval_criteria[criteria]
            data = [data_dict]
            result[criteria] = eval_func(data)
        return result
        


class DefaultEvaluator(Evaluator):
    def __init__(self, args = None, criteria= None, pipeline = None) -> None:
        super().__init__(criteria,pipeline)
        if args:
            if  hasattr(args,'str_em') and args.str_em:
                self.set_eval('str_em',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
            if  hasattr(args,'pr') and args.pr:
                self.set_eval('cite_recall_precision', output = PIPELINE_OUTPUT, docs = PIPELINE_DOC_CACHE, question = 'question')
            if  hasattr(args,'mauve') and args.mauve:
                self.set_eval('mauve', output = PIPELINE_OUTPUT, answer = 'answer' ,question = 'question')
            if  hasattr(args,'rouge') and args.rouge:
                if (hasattr(args, 'dataset') and 'qampari' not in args.dataset.lower()) or not hasattr(args, 'dataset'):
                    self.set_eval('rouge', output = PIPELINE_OUTPUT, answer = 'answer')
            if  hasattr(args,'qa') and args.qa:
                if (hasattr(args, 'dataset') and 'asqa' in args.dataset.lower()) or not hasattr(args, 'dataset'):
                    self.set_eval('qa',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
            if  hasattr(args,'claims') and args.claims:
                if (hasattr(args, 'dataset') and 'eli5' in args.dataset.lower()) or not hasattr(args, 'dataset'):
                    self.set_eval('claims',output = PIPELINE_OUTPUT, claims = 'claims')
            if  hasattr(args,'qampari') and args.qampari:
                if (hasattr(args, 'dataset') and 'qampari' in args.dataset.lower()) or not hasattr(args, 'dataset'):
                    self.set_eval('qampari',output = PIPELINE_OUTPUT, answers = 'answers')
            if  hasattr(args,'length') and args.length:
                self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT)

        elif criteria:
            if 'cite_recall_precision' in criteria:
                self.set_eval('cite_recall_precision', output = PIPELINE_OUTPUT, docs = PIPELINE_DOC_CACHE, question = 'question')
            if  hasattr(args,'mauve') and args.mauve:
                self.set_eval('mauve', output = PIPELINE_OUTPUT, answer = 'answer' ,question = 'question')
            if 'rouge' in criteria:
                self.set_eval('rouge', output = PIPELINE_OUTPUT, answer = 'answer')
            if 'qa' in criteria:
                self.set_eval('qa',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
            if 'str_em' in criteria:
                self.set_eval('str_em',output = PIPELINE_OUTPUT, qa_pairs = 'qa_pairs')
            if 'claims' in criteria:
                self.set_eval('claims',output = PIPELINE_OUTPUT, claims = 'claims')
            if 'qampari' in criteria:
                self.set_eval('qampari',output = PIPELINE_OUTPUT, answers = 'answers')
            if 'length' in criteria:
                self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT)

        else:
            self.new_eval('length',lambda data: len(data[0]['output'].split(' ')), output = PIPELINE_OUTPUT)