File size: 30,261 Bytes
96b6673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
from citekit.cite_modules.LLM import Module,LLM
from citekit.cite_modules.Retrieve import DPRRetriever
from citekit.evaluator.evaluator import _run_nli_autoais, Evaluator
from citekit.prompt.prompt import Prompt
from citekit.utils.utils import one_paragraph, make_as
from sentence_transformers import SentenceTransformer
import re
import random
class Retriever(Module):
model_type = 'retriever'
def __init__(self, documents = None ,retrieve_by = 'index', prompt_maker = None, pipeline = None, post_processing = lambda input, output: {'RetrievedDocs':output}, self_prompt = {},topk = 3,add_id = True, merge = False, tsv_path = 'None', emb_path = 'None', retrieve_from_data = True, parallel = False) -> None:
super().__init__(prompt_maker,pipeline,self_prompt,merge=merge, parallel=parallel)
self.retrieve_by = retrieve_by
self.use_head_prompt = False
self.dataset_documents = None
self.documents = None
self.default_doc_key = 'docs'
self.retrieve_from_data = retrieve_from_data
if not documents:
self.documents = self.pipeline.doc_cache
else:
self.dataset_documents = documents
self.post_processing = post_processing
self.if_add_output_to_head = False
self.topk = topk
self.add_id = add_id
if retrieve_by =='bm25':
self.bm25_module_loaded = False
from rank_bm25 import BM25Okapi
import nltk
from nltk.tokenize import word_tokenize
self.word_tokenize = word_tokenize
self.BM25Okapi = BM25Okapi
self.bm25_module_loaded = True
elif retrieve_by == 'dpr':
self.dpr_retriever = DPRRetriever(DPR_WIKI_TSV=tsv_path,
GTR_EMB=emb_path)
def generate(self,head_prompt: dict = {}, dynamic_prompt: dict = {}):
index = self.pipeline.data_index
if self.dataset_documents:
if isinstance(self.dataset_documents[0], list):
# Each data has a document
self.documents = self.dataset_documents[index]
else:
self.documents = self.dataset_documents
else:
if not self.retrieve_from_data:
self.documents = self.pipeline.doc_cache.show_docs()
else:
def _stringtfy(doc):
if isinstance(doc, str):
return doc
return f"({doc['title']}) {doc['text']}"
self.documents = list(map(_stringtfy, self.pipeline.current_data[self.default_doc_key]))
# query
if self.use_head_prompt:
prompt = self.prompt_maker(head_prompt,self.self_prompt,dynamic_prompt)
else:
prompt = self.prompt_maker(self.self_prompt,dynamic_prompt)
retrieved_docs = []
if self.retrieve_by == 'index':
# query : Document [1][2]
indice = [int(r[1:]) - 1 for r in re.findall(r"\[\d+",prompt)]
for index in indice:
retrieved_docs.append(self.documents[index])
if len(retrieved_docs) > self.topk:
retrieved_docs = retrieved_docs[:self.topk]
elif self.retrieve_by =='bm25':
# natural language query
tokenized_docs = [self.word_tokenize(doc.lower()) for doc in self.documents]
bm25 = self.BM25Okapi(tokenized_docs)
tokenized_query = self.word_tokenize(prompt.lower())
doc_scores = bm25.get_scores(tokenized_query)
if self.topk > len(doc_scores):
self.topk = len(doc_scores) - 1
top_k_idx = sorted(range(len(doc_scores)), key=lambda i: doc_scores[i], reverse=True)[:self.topk]
retrieved_docs = [self.documents[index] for index in top_k_idx]
retrieved_docs_new = []
for re_doc in retrieved_docs:
self.pipeline.doc_cache.add_doc(re_doc,self.add_id)
retrieved_docs_new.append(self.pipeline.doc_cache.get_last())
retrieved_docs = retrieved_docs_new
#raise NotImplementedError
elif self.retrieve_by =='gtr':
docs_dict = self.dpr_retriever.retrieve(prompt,topk=self.topk)
retrieved_docs = [f"({d['title']}) {d['text']}" for d in docs_dict]
retrieved_docs_new = []
for re_doc in retrieved_docs:
self.pipeline.doc_cache.add_doc(re_doc,self.add_id)
retrieved_docs_new.append(self.pipeline.doc_cache.get_last())
retrieved_docs = retrieved_docs_new
retrieved_docs_prompt = '\n'.join(retrieved_docs)
destination = self.send()
if self.multi_process:
self.last_message.append(retrieved_docs_prompt)
else:
self.last_message = retrieved_docs_prompt
#print(self.last_message)
if self.if_add_output_to_head:
self.pipeline.head.update({self.head_key:retrieved_docs_prompt})
if destination in self.conditions:
try:
return self.conditions[destination]['post_processing'](prompt,retrieved_docs_prompt)
except:
return self.conditions[destination]['post_processing'](retrieved_docs_prompt)
else:
return retrieved_docs_prompt
raise NotImplementedError
class EvalModule(Module, Evaluator):
model_type = 'evaluator'
def __init__(self, prompt_maker = None, pipeline=None, self_prompt={},criteria = None, iterative = False, max_turn =6 ,parallel = False) -> None:
Module.__init__(self,prompt_maker, pipeline, self_prompt,iterative=iterative,max_turn=max_turn, parallel=parallel)
Evaluator.__init__(self,criteria,pipeline)
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
result = {}
p_data = {**head_prompt, **self.self_prompt,**dynamic_prompt}
for criteria, get_data in self.get_data.items():
data_dict = {}
for k, v in get_data.items():
if v == 'doc_cache':
data_dict[k] = self.pipeline.doc_cache.show_docs()
else:
if v in p_data.keys():
data_dict[k] = p_data[v]
else:
data_dict[k] = self.pipeline.current_data[v]
eval_func = Evaluator.eval_criteria[criteria]
data = [data_dict]
result[criteria] = eval_func(data)
if self.multi_process:
self.last_message.append(result)
else:
self.last_message = result
destination = self.send()
if destination in self.conditions:
return self.conditions[destination]['post_processing'](result)
else:
return result
class CitationSimplyfier(Module):
'''
Simplify the citation of the 'answer' in prompt.
Argument can be changed to fit into different name of key in prompts
By Defaut, the simplifier simplifies the 'answer' and output the sring with citation simplified.
'''
model_type = 'simplifier'
def __init__(self, prompt_maker = None, pipeline=None, self_prompt={}, criteria = None, key = 'answer', test = False, allow_empty = True) -> None:
Module.__init__(self,prompt_maker, pipeline, self_prompt)
if not test:
self.entail = _run_nli_autoais
else:
self.entail = lambda p,c : random.randint(0,1)
self.docs = ['0'] * 100
self.key = key
self.allow_empty = allow_empty
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}) -> str:
docs = self.pipeline.doc_cache
prompt = {**head_prompt, **dynamic_prompt}
answer = prompt[self.key]
refs = re.findall(r'\[\d+\]', answer)
last_ref_index = None
for match in re.finditer(r'\[\d+\]', answer):
last_ref_index = match.end()
if not refs:
return answer
refs_str = ''.join(refs)
def simplify(sentence, refs, docs):
ref_numbers = [int(ref.strip('[]')) for ref in refs]
docs_combined = ''.join(docs[ref - 1] for ref in ref_numbers if ref - 1 < len(docs))
if not self.entail(docs_combined, sentence):
if self.allow_empty:
return ''
return ''.join(refs)
if len(ref_numbers) == 1:
return ''.join(f'[{num}]' for num in ref_numbers)
def remove_and_test(ref_numbers):
for i, ref in enumerate(ref_numbers):
new_ref_numbers = ref_numbers[:i] + ref_numbers[i+1:]
new_docs_combined = ''.join(docs[r - 1] for r in new_ref_numbers if r - 1 < len(docs))
if self.entail(new_docs_combined, sentence):
if len(new_ref_numbers) == 1:
return new_ref_numbers
return remove_and_test(new_ref_numbers)
return ref_numbers
simplified_ref_numbers = remove_and_test(ref_numbers)
simplified_refs = ''.join(f'[{num}]' for num in simplified_ref_numbers)
return simplified_refs
simplified_refs = simplify(answer,refs,docs)
sentence_without_refs = re.sub(r'\[\d+\]', '', answer)
if last_ref_index is not None:
output = sentence_without_refs[:last_ref_index - len(refs_str)] + simplified_refs + sentence_without_refs[last_ref_index - len(refs_str):]
else:
output = sentence_without_refs + simplified_refs
if not simplified_refs and self.allow_empty:
output = ''
if self.multi_process:
self.last_message.append(output)
else:
self.last_message = output
return output
class Verifier(Module):
'''
Verifier is currently only used for single sentence/single target answer, not for parallel or iterative answer.
Verifier will return dynamic prompt, not like other modules returning output. It is a judger only to decide the target module.
By default, the verifoer verifies whether the documents support the answer.
'''
model_type = 'verifier'
def __init__(self, prompt_maker = None, pipeline=None, self_prompt={}, criteria = None, key = 'answer', test = False) -> None:
Module.__init__(self,prompt_maker, pipeline, self_prompt)
if not test:
self.entail = _run_nli_autoais
else:
self.entail = lambda p,c : random.randint(0,1)
self.docs = ['s'] * 100
self.key = key
self.test = test
# Overcite this function to
def verifier_judge(self,**kargs):
docs = self.pipeline.doc_cache
answer = kargs[self.key]
refs = re.findall(r'\[\d+\]', answer)
if not refs:
return False
ref_numbers = [int(ref.strip('[]')) for ref in refs]
docs_combined = ''.join(docs[ref - 1] for ref in ref_numbers if ref - 1 < len(docs))
return bool(self.entail(docs_combined, re.sub(r'\[\d+\]', '', answer)))
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
prompt = {**head_prompt, **dynamic_prompt}
out = self.verifier_judge(**prompt)
self.last_message = out
self.turns += 1
return dynamic_prompt
class AugmentCluster():
def __init__(self, module_list = []) -> None:
self.module_list = module_list
module_count = len(module_list)
for i in range(module_count - 1):
assert isinstance(module_list[i],LLM) and isinstance(module_list[i+1],LLM)
module_list[i].set_target(module_list[i+1], post_processing = module_list[i].post_processing)
def get_first_module(self):
return self.module_list[0]
def get_destinations(self):
return self.module_list[-1].get_destinations()
def reset(self):
for module in self.module_list:
module.reset()
def update(self, config, update_info):
print('updating the AugmentCluster', update_info)
self.module_list[-1].update(config, update_info)
def __str__(self):
print('getting str of the cluster', ' -> '.join([str(module) for module in self.module_list]))
return ' -> '.join([str(module) for module in self.module_list])
def set_target(self,destination, condition = lambda self: True, post_processing = lambda x: x) -> None:
self.module_list[-1].set_target(destination, condition, post_processing)
def set_output(self, cond = lambda self: True, post_processing = lambda x:x, end = True):
self.module_list[-1].set_output(cond, post_processing, end)
def connect_to(self, pipeline = None) -> None:
for module in self.module_list:
module.connect_to(pipeline)
pipeline.stored_clusters.append(self)
class Attribute_post_select(LLM):
noisy = False
model_name = 'function'
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
print('post_select', head_prompt, dynamic_prompt)
docs = head_prompt['docs']
ans_docs = one_paragraph(dynamic_prompt['span']).split("\n")
spans = [ans_doc[14:].split("<SPAN_DELIM>") for ans_doc in ans_docs]
msg = ''
span_list = {}
doc_map = {}
j = 1
i = 1
for doc in spans:
if doc!= [] :
span_list[f'{i}'] = []
msg += f'Document [{i}]:\n'
for span in doc:
if len(span)> 3:
msg += f'{j}. {span}\n'
span_list[f'{i}'].append(f'{j}. {span.strip()}')
doc_map[str(j)] = str(i)
j+=1
docs = docs.replace(span.strip(), f'<highlight_start>{span.strip()}<highlight_end>')
i+=1
self.pipeline.head['doc_map'] = doc_map
self.pipeline.head['docs'] = docs
self.pipeline.head['span'] = msg
self.pipeline.head['span_list'] = span_list
return {'span_list': Prompt.UNABLE,'doc_map': Prompt.UNABLE}
class Attribute_post_cluster(LLM):
noisy = False
model_name = 'function'
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
print('f1', head_prompt, dynamic_prompt)
span_ls = head_prompt['span_list']
doc_map = head_prompt['doc_map']
span_list = [item for sublist in head_prompt['span_list'].values() for item in sublist]
clusters = eval(one_paragraph(dynamic_prompt['cls'].strip()))
self.pipeline.head['clusters'] = clusters
def _form(cls):
text = ''
doc_list = cls['cluster']
for doc_num in span_ls.keys():
pieces = [str(i) for i in doc_list if doc_map.get(str(i),'None') == doc_num]
if pieces:
text += f'Document [{doc_num}]: \n' + '\n'.join([span_list[int(num)-1] for num in pieces]) + '\n'
return(text)
#print([{'span': _form(cls)} for cls in clusters])
return [{'span': _form(cls),'span_list': Prompt.UNABLE,'doc_map': Prompt.UNABLE,'clusters':Prompt.UNABLE,'docs':Prompt.UNABLE} for cls in clusters if _form(cls)]
class Ranker(EvalModule):
def __init__(self, prompt_maker=None, pipeline=None, self_prompt={}, criteria=None,iterative = True, max_turn = 3, parallel = False, post_processing = lambda x : x, fixed_turn = None) -> None:
super().__init__(prompt_maker, pipeline, self_prompt, criteria, iterative = iterative, max_turn = max_turn, parallel = parallel)
self.compare = []
self.post_processing = post_processing
if fixed_turn:
self.fixed_turn = fixed_turn
else:
self.fixed_turn = max_turn
def generate(self, head_prompt: dict = {}, dynamic_prompt: dict = {}):
self.turns += 1
result = {}
p_data = {**head_prompt, **self.self_prompt,**dynamic_prompt}
for criteria, get_data in self.get_data.items():
data_dict = {}
for k, v in get_data.items():
if v == 'doc_cache':
data_dict[k] = self.pipeline.doc_cache.show_docs()
else:
if v in p_data.keys():
data_dict[k] = p_data[v]
else:
data_dict[k] = self.pipeline.current_data[v]
eval_func = self.eval_criteria[criteria]
data = [data_dict]
result[criteria] = eval_func(data)
result = sum([value for key, value in result.items()])
self.compare.append((result,dynamic_prompt))
output = max(self.compare,key = lambda x:x[0])[1]
destination = self.send()
self.last_message = output
if len(self.compare) == self.fixed_turn:
self.compare = []
if destination in self.conditions:
return self.conditions[destination]['post_processing'](output)
else:
return self.post_processing(output)
return {}
def end_multi(self):
self.compare = []
return super().end_multi()
class AttributingModule(AugmentCluster):
model_type = 'attributer'
demo ={
"selection_instruction":"In this task, you are presented with several documents, which need to be summarized. As an intermediate step, you need to identify salient content within the documents. For each document, copy verbatim the salient spans, and use <SPAN_DELIM> as a delimiter between each consecutive span. IMPORTANT: The output must be of the format Document [<DOC_ID>]: <SPAN_DELIM>-delimited consecutive salient spans. IMPORTANT: Each salient content must be a single consecutive verbatim span from the corresponding passages. IMPORTANT: make sure the total number of copied words (from all documents) is around 200 words, and not more than 900.",
"selection_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. Cherrapunji has often been credited as being the wettest place on Earth, but for now nearby Mawsynram currently holds that distinction. Cherrapunji still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. Cherrapunji has often been credited as being the wettest place on Earth, but for now nearby Mawsynram currently holds that distinction. Cherrapunji still holds the all-time record for the most rainfall\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. Mawsynram receives one of the highest rainfalls in India. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 and L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25掳 18鈥瞈" \n\nAnswer: \nDocument [1]: <SPAN_DELIM>Cherrapunji has often been credited as being the wettest place on Earth<SPAN_DELIM> still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<SPAN_DELIM> \nDocument [2]: <SPAN_DELIM>Cherrapunji has often been credited as being the wettest place on Earth<SPAN_DELIM>still holds the all-time record for the most rainfall<SPAN_DELIM> \nDocument [3]: <SPAN_DELIM>Mawsynram receives one of the highest rainfalls in India <SPAN_DELIM> but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 <SPAN_DELIM> L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. <SPAN_DELIM>",
"clustering_instruction":"In this task, you are presented with several passages, where some parts are \"highlighted\" (namely, there are <highlight_start> and <highlight_end> tokens before and after each such span). The goal is to fuse all those highlights into a single summary. As an intermediate step, you need to cluster highlights that can be merged into a sentence (namely, each cluster will be later merged into one sentence). Make sure the clusters are in the same order you would then write the corresponding summary sentences. IMORTANT: make sure there are at most 3 clusters, and no more than 3 highlights per cluster. IMPORTANT: The output must be of the format [\"cluster\":[comma-delimited highlights indices]]",
"clustering_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. Cherrapunji <highlight_start>still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<highlight_end>, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. <highlight_start>Cherrapunji still holds the all-time record for the most rainfall<highlight_end>\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. <highlight_start>Mawsynram receives one of the highest rainfalls in India<highlight_end>. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, <highlight_start>but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989<highlight_end> and <highlight_start>L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012.<highlight_end> According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25掳 18鈥瞈" \n\nThe highlighted spans are: \nDocument [1]: 1. Cherrapunji has often been credited as being the wettest place on Earth \n2. still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861 \nDocument [2]: \n3. Cherrapunji has often been credited as being the wettest place on Earth \n4. still holds the all-time record for the most rainfall \nDocument [3]: \n5. Mawsynram receives one of the highest rainfalls in India \n6. but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989 \n7. L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012. \n\nAnswer: \nThe highlighted spans are clustered as follows: \n[{\"cluster\":[6,7]}, {\"cluster\":[5]},{\"cluster\":[1,2]}]",
"gen_instruction":"In this task, you are presented with several passages, where some parts are \"highlighted\" (namely, there are <highlight_start> and <highlight_end> tokens before and after each such span). You may also be presented with a prefix of the answer. You job is to generate the next sentence of the answer, that covers all and only the \"highlighted\" spans. Make sure it connects well with the prefix(if eixists), and that it covers all and only the \"highlighted\" spans. Always cite for any factual claim. When citing several search results, use [1][2][3]. Cite at least one document and at most three documents in each sentence. If multiple documents support the sentence, only cite a minimum sufficient subset of the documents.",
"gen_shot":"Document [1]: Cherrapunji Cherrapunji ( with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. Cherrapunji <highlight_start>still holds the all-time record for the most rainfall in a calendar month for July 1861 and most rain in a year from August 1860 to July 1861<highlight_end>, however: it received in\" \nDocument [2]: Radio relay station known as Akashvani Cherrapunji. It broadcasts on FM frequencies. Cherrapunji Cherrapunji (; with the native name Sohra being more commonly used, and can also be spelled Cherrapunjee or Cherrapunji) is a subdivisional town in the East Khasi Hills district in the Indian state of Meghalaya. It is the traditional capital of aNongkhlaw \"hima\" (Khasi tribal chieftainship constituting a petty state), both known as Sohra or Churra. <highlight_start>Cherrapunji has often been credited as being the wettest place on Earth<highlight_end>, but for now nearby Mawsynram currently holds that distinction. <highlight_start>Cherrapunji still holds the all-time record for the most rainfall<highlight_end>\" \nDocument [3]: \"Mawsynram Mawsynram () is a village in the East Khasi Hills district of Meghalaya state in north-eastern India, 65 kilometres from Shillong. <highlight_start>Mawsynram receives one of the highest rainfalls in India<highlight_end>. It is reportedly the wettest place on Earth, with an average annual rainfall of 11,872 mm, <highlight_start>but that claim is disputed by Llor贸, Colombia, which reported an average yearly rainfall of 12,717 mm between 1952 and 1989<highlight_end> and <highlight_start>L贸pez de Micay, also in Colombia, which reported an annual 12,892 mm per year between 1960 and 2012.<highlight_end> According to the \"Guinness Book of World Records\", Mawsynram received of rainfall in 1985. Mawsynram is located at 25掳 18鈥瞈" \n\nPrefix: Several places on Earth claim to be the most rainy, such as Llor贸, Colombia, which reported an average annual rainfall of 12,717 mm between 1952 and 1989, and L贸pez de Micay, Colombia, which reported an annual 12,892 mm between 1960 and 2012 [3]. \n\nThe highlighted spans are: \nDocument [3]: \n5. Mawsynram receives one of the highest rainfalls in India \n\nAnswer: \nThe next sentence is: \nHowever, the official record is held by Mawsynram, India with an average annual rainfall of 11,872 mm [3]."
}
PARA_SEP = '\n\n'
selection_shot = demo['selection_instruction'] + PARA_SEP + demo['selection_shot'] + PARA_SEP
cls_shot = demo['clustering_instruction'] + PARA_SEP + demo['clustering_shot'] + PARA_SEP
gen_shot = demo['gen_instruction'] + PARA_SEP + demo['gen_shot'] + PARA_SEP
prompt = Prompt(template='<shot><INST><question><docs><prefix><span><add>',
components={'INST':'{INST}\n\n',
'shot':'{shot}',
'question':'Question:{question}\n\n',
'docs':'{docs}\n',
'span':'The highlighted spans are: \n{span}\n\n',
'prefix':'Prefix: {prefix}\n\n',
'add':'Answer: \n{add}'
})
def __init__(self, model) -> None:
module_list = []
select = LLM(model = model, prompt_maker = self.prompt, self_prompt={'INST':self.demo['selection_instruction'],'shot':self.selection_shot,'add':''}, post_processing=make_as('span'),noisy= False)
post_select = Attribute_post_select()
clustering = LLM(model = model, prompt_maker = self.prompt, self_prompt={'INST':self.demo['clustering_instruction'],'shot':self.cls_shot, 'add':'The highlighted spans are clustered as follows:'},share_model_with=select, post_processing=make_as('cls'),noisy=False)
post_cls = Attribute_post_cluster()
module_list = [select,post_select,clustering,post_cls]
super().__init__(module_list)
MODEL_TYPE_MAPPING = {
'retrieve': Retriever,
'eval': EvalModule,
'simplify': CitationSimplyfier,
'verify': Verifier,
'rank': Ranker,
'attributing': AttributingModule
} |