Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -36,11 +36,52 @@ To get started with PanopticQuality, make sure you have the necessary dependenci | |
| 36 | 
             
            Added data ...
         | 
| 37 | 
             
            Start computing ...
         | 
| 38 | 
             
            Finished!
         | 
| 39 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 40 | 
             
            ```
         | 
| 41 |  | 
| 42 | 
             
            ## Metric Settings
         | 
| 43 | 
            -
            The metric takes  | 
| 44 |  | 
| 45 | 
             
            * `label2id: Dict[str, int]`: this dictionary is used to map string labels to an integer representation.
         | 
| 46 | 
             
                if not provided a default setting will be used:
         | 
| @@ -69,8 +110,24 @@ The metric takes two optional input parameters: __label2id__ and __stuff__. | |
| 69 | 
             
                    `
         | 
| 70 | 
             
                    ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]`
         | 
| 71 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 72 | 
             
            ## Output Values
         | 
| 73 | 
            -
            A  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 74 |  | 
| 75 | 
             
            ## Further References
         | 
| 76 |  | 
|  | |
| 36 | 
             
            Added data ...
         | 
| 37 | 
             
            Start computing ...
         | 
| 38 | 
             
            Finished!
         | 
| 39 | 
            +
            {'scores': {'MOTORBOAT': [0.18632257426639526,
         | 
| 40 | 
            +
               0.698709617058436,
         | 
| 41 | 
            +
               0.2666666805744171],
         | 
| 42 | 
            +
              'FAR_AWAY_OBJECT': [0.0, 0.0, 0.0],
         | 
| 43 | 
            +
              'SAILING_BOAT_WITH_CLOSED_SAILS': [0.0, 0.0, 0.0],
         | 
| 44 | 
            +
              'SHIP': [0.3621737026917471, 0.684105846616957, 0.529411792755127],
         | 
| 45 | 
            +
              'WATERCRAFT': [0.0, 0.0, 0.0],
         | 
| 46 | 
            +
              'SPHERICAL_BUOY': [0.0, 0.0, 0.0],
         | 
| 47 | 
            +
              'FLOTSAM': [0.0, 0.0, 0.0],
         | 
| 48 | 
            +
              'SAILING_BOAT_WITH_OPEN_SAILS': [0.0, 0.0, 0.0],
         | 
| 49 | 
            +
              'CONTAINER': [0.0, 0.0, 0.0],
         | 
| 50 | 
            +
              'PILLAR_BUOY': [0.0, 0.0, 0.0],
         | 
| 51 | 
            +
              'AERIAL_ANIMAL': [0.0, 0.0, 0.0],
         | 
| 52 | 
            +
              'HUMAN_IN_WATER': [0.0, 0.0, 0.0],
         | 
| 53 | 
            +
              'WOODEN_LOG': [0.0, 0.0, 0.0],
         | 
| 54 | 
            +
              'MARITIME_ANIMAL': [0.0, 0.0, 0.0],
         | 
| 55 | 
            +
              'WATER': [0.9397601008415222, 0.9397601008415222, 1.0],
         | 
| 56 | 
            +
              'SKY': [0.9674496332804362, 0.9674496332804362, 1.0],
         | 
| 57 | 
            +
              'LAND': [0.30757412078761204, 0.8304501533508301, 0.37037035822868347],
         | 
| 58 | 
            +
              'CONSTRUCTION': [0.0, 0.0, 0.0],
         | 
| 59 | 
            +
              'OWN_BOAT': [0.0, 0.0, 0.0],
         | 
| 60 | 
            +
              'ALL': [0.14543579641409013, 0.21686712374464112, 0.16665520166095935]},
         | 
| 61 | 
            +
             'numbers': {'MOTORBOAT': [6, 15, 18, 4.1922577023506165],
         | 
| 62 | 
            +
              'FAR_AWAY_OBJECT': [0, 8, 9, 0.0],
         | 
| 63 | 
            +
              'SAILING_BOAT_WITH_CLOSED_SAILS': [0, 2, 0, 0.0],
         | 
| 64 | 
            +
              'SHIP': [9, 1, 15, 6.156952619552612],
         | 
| 65 | 
            +
              'WATERCRAFT': [0, 9, 12, 0.0],
         | 
| 66 | 
            +
              'SPHERICAL_BUOY': [0, 4, 22, 0.0],
         | 
| 67 | 
            +
              'FLOTSAM': [0, 0, 1, 0.0],
         | 
| 68 | 
            +
              'SAILING_BOAT_WITH_OPEN_SAILS': [0, 6, 0, 0.0],
         | 
| 69 | 
            +
              'CONTAINER': [0, 0, 0, 0.0],
         | 
| 70 | 
            +
              'PILLAR_BUOY': [0, 0, 9, 0.0],
         | 
| 71 | 
            +
              'AERIAL_ANIMAL': [0, 0, 0, 0.0],
         | 
| 72 | 
            +
              'HUMAN_IN_WATER': [0, 0, 0, 0.0],
         | 
| 73 | 
            +
              'WOODEN_LOG': [0, 0, 0, 0.0],
         | 
| 74 | 
            +
              'MARITIME_ANIMAL': [0, 0, 0, 0.0],
         | 
| 75 | 
            +
              'WATER': [15, 0, 0, 14.096401512622833],
         | 
| 76 | 
            +
              'SKY': [15, 0, 0, 14.511744499206543],
         | 
| 77 | 
            +
              'LAND': [5, 9, 8, 4.15225076675415],
         | 
| 78 | 
            +
              'CONSTRUCTION': [0, 0, 0, 0.0],
         | 
| 79 | 
            +
              'OWN_BOAT': [0, 0, 8, 0.0],
         | 
| 80 | 
            +
              'ALL': [50, 54, 102, 43.109607100486755]}}
         | 
| 81 | 
             
            ```
         | 
| 82 |  | 
| 83 | 
             
            ## Metric Settings
         | 
| 84 | 
            +
            The metric takes four optional input parameters: __label2id__, __stuff__, __per_class__ and __split_sq_rq__.
         | 
| 85 |  | 
| 86 | 
             
            * `label2id: Dict[str, int]`: this dictionary is used to map string labels to an integer representation.
         | 
| 87 | 
             
                if not provided a default setting will be used:
         | 
|  | |
| 110 | 
             
                    `
         | 
| 111 | 
             
                    ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]`
         | 
| 112 |  | 
| 113 | 
            +
            * `per_class: bool = True`: By default, the results are split up per class.
         | 
| 114 | 
            +
                Setting this to False will aggregate the results:
         | 
| 115 | 
            +
                  - average the "scores"
         | 
| 116 | 
            +
                  - sum up the "numbers"
         | 
| 117 | 
            +
            * `split_sq_rq: bool = True`: By default, the PQ-score is returned in three parts: the PQ score itself, and split into the segmentation quality (SQ) and recognition quality (RQ) part.
         | 
| 118 | 
            +
                Setting this to False will aggregate return the PQ score only (PQ=RQ*SQ).
         | 
| 119 | 
            +
             | 
| 120 | 
             
            ## Output Values
         | 
| 121 | 
            +
            A dictionary containing the following keys:
         | 
| 122 | 
            +
            * __scores__: This is a dictionary, that contains a key for each label, if `per_class == True`. Otherwise it only contains the key __all__.
         | 
| 123 | 
            +
                          For each key, it contains a list that holds the scores in the following order: PQ, SQ and RQ. If `split_sq_rq == False`, the list consists of PQ only.
         | 
| 124 | 
            +
            * __numbers__: This is a dictionary, that contains a key for each label, if `per_class == True`. Otherwise it only contains the key __all__.
         | 
| 125 | 
            +
                           For each key, it contains a list that consists of four elements: TP, FP, FN and IOU:
         | 
| 126 | 
            +
                             - __TP__: number of true positive predictions
         | 
| 127 | 
            +
                             - __FP__: number of false positive predictions
         | 
| 128 | 
            +
                             - __FN__: number of false negative predictions
         | 
| 129 | 
            +
                             - __IOU__: sum of IOU of all TP predictions with ground truth
         | 
| 130 | 
            +
                           With all these values, it is possible to calculate the final scores.
         | 
| 131 |  | 
| 132 | 
             
            ## Further References
         | 
| 133 |  | 
