Spaces:
Sleeping
Sleeping
Victoria Oberascher
commited on
Commit
·
0d4201c
1
Parent(s):
aba632c
update app
Browse files
app.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
import sys
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
module = evaluate.load("SEA-AI/horizon-metrics")
|
| 9 |
+
|
| 10 |
+
REGEX_YAML_BLOCK = re.compile(r"---[\n\r]+([\S\s]*?)[\n\r]+---[\n\r]")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def infer_gradio_input_types(feature_types):
|
| 14 |
+
"""
|
| 15 |
+
Maps metric feature types to input types for gradio Dataframes:
|
| 16 |
+
- float/int -> numbers
|
| 17 |
+
- string -> strings
|
| 18 |
+
- any other -> json
|
| 19 |
+
Note that json is not a native gradio type but will be treated as string that
|
| 20 |
+
is then parsed as a json.
|
| 21 |
+
"""
|
| 22 |
+
input_types = []
|
| 23 |
+
for feature_type in feature_types:
|
| 24 |
+
input_type = "json"
|
| 25 |
+
if isinstance(feature_type, Value):
|
| 26 |
+
if feature_type.dtype.startswith(
|
| 27 |
+
"int") or feature_type.dtype.startswith("float"):
|
| 28 |
+
input_type = "number"
|
| 29 |
+
elif feature_type.dtype == "string":
|
| 30 |
+
input_type = "str"
|
| 31 |
+
input_types.append(input_type)
|
| 32 |
+
return input_types
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def json_to_string_type(input_types):
|
| 36 |
+
"""Maps json input type to str."""
|
| 37 |
+
return ["str" if i == "json" else i for i in input_types]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def parse_readme(filepath):
|
| 41 |
+
"""Parses a repositories README and removes"""
|
| 42 |
+
if not os.path.exists(filepath):
|
| 43 |
+
return "No README.md found."
|
| 44 |
+
with open(filepath, "r") as f:
|
| 45 |
+
text = f.read()
|
| 46 |
+
match = REGEX_YAML_BLOCK.search(text)
|
| 47 |
+
if match:
|
| 48 |
+
text = text[match.end():]
|
| 49 |
+
return text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def parse_gradio_data(data, input_types):
|
| 53 |
+
"""Parses data from gradio Dataframe for use in metric."""
|
| 54 |
+
metric_inputs = {}
|
| 55 |
+
data.replace("", np.nan, inplace=True)
|
| 56 |
+
data.dropna(inplace=True)
|
| 57 |
+
for feature_name, input_type in zip(data, input_types):
|
| 58 |
+
if input_type == "json":
|
| 59 |
+
metric_inputs[feature_name] = [
|
| 60 |
+
json.loads(d) for d in data[feature_name].to_list()
|
| 61 |
+
]
|
| 62 |
+
elif input_type == "str":
|
| 63 |
+
metric_inputs[feature_name] = [
|
| 64 |
+
d.strip('"') for d in data[feature_name].to_list()
|
| 65 |
+
]
|
| 66 |
+
else:
|
| 67 |
+
metric_inputs[feature_name] = data[feature_name]
|
| 68 |
+
return metric_inputs
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def parse_test_cases(test_cases, feature_names, input_types):
|
| 72 |
+
"""
|
| 73 |
+
Parses test cases to be used in gradio Dataframe. Note that an apostrophe is added
|
| 74 |
+
to strings to follow the format in json.
|
| 75 |
+
"""
|
| 76 |
+
if len(test_cases) == 0:
|
| 77 |
+
return None
|
| 78 |
+
examples = []
|
| 79 |
+
for test_case in test_cases:
|
| 80 |
+
parsed_cases = []
|
| 81 |
+
for feat, input_type in zip(feature_names, input_types):
|
| 82 |
+
if input_type == "json":
|
| 83 |
+
parsed_cases.append(
|
| 84 |
+
[str(element) for element in test_case[feat]])
|
| 85 |
+
elif input_type == "str":
|
| 86 |
+
parsed_cases.append(
|
| 87 |
+
['"' + element + '"' for element in test_case[feat]])
|
| 88 |
+
else:
|
| 89 |
+
parsed_cases.append(test_case[feat])
|
| 90 |
+
examples.append([list(i) for i in zip(*parsed_cases)])
|
| 91 |
+
return examples
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def launch_gradio_widget(metric):
|
| 95 |
+
"""Launches `metric` widget with Gradio."""
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
import gradio as gr
|
| 99 |
+
except ImportError as error:
|
| 100 |
+
print(
|
| 101 |
+
"To create a metric widget with Gradio make sure gradio is installed."
|
| 102 |
+
)
|
| 103 |
+
raise error
|
| 104 |
+
|
| 105 |
+
local_path = Path(sys.path[0])
|
| 106 |
+
# if there are several input types, use first as default.
|
| 107 |
+
if isinstance(metric.features, list):
|
| 108 |
+
(feature_names, feature_types) = zip(*metric.features[0].items())
|
| 109 |
+
else:
|
| 110 |
+
(feature_names, feature_types) = zip(*metric.features.items())
|
| 111 |
+
gradio_input_types = infer_gradio_input_types(feature_types)
|
| 112 |
+
|
| 113 |
+
def compute(data):
|
| 114 |
+
return metric.compute(**parse_gradio_data(data, gradio_input_types))
|
| 115 |
+
|
| 116 |
+
iface = gr.Interface(
|
| 117 |
+
fn=compute,
|
| 118 |
+
inputs=[
|
| 119 |
+
gr.inputs.Textbox(lines=5, label="Predictions"),
|
| 120 |
+
gr.inputs.Textbox(lines=5, label="Ground Truth")
|
| 121 |
+
],
|
| 122 |
+
outputs=gr.outputs.Textbox(label=metric.name),
|
| 123 |
+
description=
|
| 124 |
+
(metric.info.description +
|
| 125 |
+
"\nIf this is a text-based metric, make sure to wrap you input in double quotes."
|
| 126 |
+
" Alternatively you can use a JSON-formatted list as input."),
|
| 127 |
+
title=f"Metric: {metric.name}",
|
| 128 |
+
article=parse_readme(local_path / "README.md"),
|
| 129 |
+
# TODO: load test cases and use them to populate examples
|
| 130 |
+
# examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)]
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
iface.launch()
|