Spaces:
Sleeping
Sleeping
Victoria Oberascher
commited on
Commit
·
0c1d03a
1
Parent(s):
870b63f
add fiftyone example in readme
Browse files
README.md
CHANGED
@@ -34,25 +34,46 @@ To get started with horizon-metrics, make sure you have the necessary dependenci
|
|
34 |
This is how you can quickly evaluate your horizon prediction models using SEA-AI/horizon-metrics:
|
35 |
|
36 |
```python
|
|
|
37 |
import evaluate
|
38 |
|
|
|
39 |
ground_truth_points = [[[0.0, 0.5384765625], [1.0, 0.4931640625]],
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
prediction_points = [[[0.0, 0.5428930956049597], [1.0, 0.4642497615378973]],
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
module = evaluate.load("SEA-AI/horizon-metrics")
|
53 |
module.add(predictions=ground_truth_points, references=prediction_points)
|
54 |
module.compute()
|
55 |
-
|
56 |
```
|
57 |
|
58 |
This is output the evalutaion metrics for your horizon prediciton model:
|
|
|
34 |
This is how you can quickly evaluate your horizon prediction models using SEA-AI/horizon-metrics:
|
35 |
|
36 |
```python
|
37 |
+
|
38 |
import evaluate
|
39 |
|
40 |
+
# Use artificial data for testing or
|
41 |
ground_truth_points = [[[0.0, 0.5384765625], [1.0, 0.4931640625]],
|
42 |
+
[[0.0, 0.53796875], [1.0, 0.4928515625]],
|
43 |
+
[[0.0, 0.5374609375], [1.0, 0.4925390625]],
|
44 |
+
[[0.0, 0.536953125], [1.0, 0.4922265625]],
|
45 |
+
[[0.0, 0.5364453125], [1.0, 0.4919140625]]]
|
46 |
|
47 |
prediction_points = [[[0.0, 0.5428930956049597], [1.0, 0.4642497615378973]],
|
48 |
+
[[0.0, 0.5428930956049597], [1.0, 0.4642497615378973]],
|
49 |
+
[[0.0, 0.523573113510805], [1.0, 0.47642688648919496]],
|
50 |
+
[[0.0, 0.5200016849393765], [1.0, 0.4728554579177664]],
|
51 |
+
[[0.0, 0.523573113510805], [1.0, 0.47642688648919496]]]
|
52 |
+
|
53 |
+
# Load data from fiftyone
|
54 |
+
sequence = "Sentry_2023_02_Portugal_2023_01_24_19_15_17"
|
55 |
+
dataset_name = "SENTRY_VIDEOS_DATASET_QA"
|
56 |
+
sequence_view = fo.load_dataset(dataset_name).match(F("sequence") == sequence)
|
57 |
+
sequence_view = sequence_view.select_group_slices("thermal_wide")
|
58 |
+
|
59 |
+
# Get the ground truth points
|
60 |
+
polylines_gt = sequence_view.values("frames.ground_truth_pl")
|
61 |
+
ground_truth_points = [
|
62 |
+
line["polylines"][0]["points"][0] for line in polylines_gt[0]
|
63 |
+
if line is not None
|
64 |
+
]
|
65 |
+
|
66 |
+
# Get the predicted points
|
67 |
+
polylines_pred = sequence_view.values(
|
68 |
+
"frames.ahoy-IR-b2-whales__XAVIER-AGX-JP46_pl")
|
69 |
+
prediction_points = [
|
70 |
+
line["polylines"][0]["points"][0] for line in polylines_pred[0]
|
71 |
+
if line is not None
|
72 |
+
]
|
73 |
|
74 |
module = evaluate.load("SEA-AI/horizon-metrics")
|
75 |
module.add(predictions=ground_truth_points, references=prediction_points)
|
76 |
module.compute()
|
|
|
77 |
```
|
78 |
|
79 |
This is output the evalutaion metrics for your horizon prediciton model:
|