File size: 13,708 Bytes
aee59a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d4608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee59a3
db9ef5e
 
aee59a3
 
 
db9ef5e
 
 
 
 
 
 
 
 
 
 
 
 
 
aee59a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db9ef5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee59a3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""

# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("my_new_module")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'accuracy': 1.0}
"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"

import numpy as np


def xy_points_to_slope_midpoint(xy_points):
    """
    Given two points, return the slope and midpoint of the line

    Args:
    xy_points: list of two points, each point is a list of two elements
    Points are in the form of [x, y], where x and y are normalized to [0, 1]

    Returns:
    slope: Slope of the line
    midpoint : Midpoint is in the form of [x,y], and is also normalized to [0, 1]
    """

    x1, y1, x2, y2 = xy_points[0][0], xy_points[0][1], xy_points[1][
        0], xy_points[1][1]
    slope = (y2 - y1) / (x2 - x1)

    midpoint_x = 0.5
    midpoint_y = slope * (0.5 - x1) + y1
    midpoint = [midpoint_x, midpoint_y]
    return slope, midpoint


def calculate_horizon_error(annotated_horizon, proposed_horizon):
    """
    Calculate the error between the annotated horizon and the proposed horizon

    Args:
    annotated_horizon: list of two points, each point is a list of two elements
    Points are in the form of [x, y], where x and y are normalized to [0, 1]
    proposed_horizon: list of two points, each point is a list of two elements
    Points are in the form of [x, y], where x and y are normalized to [0, 1]

    Returns:
    slope_error: Error in the slope of the lines
    midpoint_error: Error in the midpoint_y of the lines
    """

    slope_annotated, midpoint_annotated = xy_points_to_slope_midpoint(
        annotated_horizon)
    slope_proposed, midpoint_proposed = xy_points_to_slope_midpoint(
        proposed_horizon)

    slope_error = abs(slope_annotated - slope_proposed)
    midpoint_error = abs(midpoint_annotated[1] - midpoint_proposed[1])

    return slope_error, midpoint_error


def calculate_horizon_error_across_sequence(slope_error_list,
                                            midpoint_error_list,
                                            slope_error_jump_threshold,
                                            midpoint_error_jump_threshold):
    """
    Calculate the error statistics across a sequence of frames

    Args:
    slope_error_list: List of errors in the slope of the lines
    midpoint_error_list: List of errors in the midpoint_y of the lines

    Returns:
    average_slope_error: Average error in the slope of the lines
    average_midpoint_error: Average error in the midpoint_y of the lines
    """

    # Calculate the average and standard deviation of the errors
    average_slope_error = np.mean(slope_error_list)
    average_midpoint_error = np.mean(midpoint_error_list)

    stddev_slope_error = np.std(slope_error_list)
    stddev_midpoint_error = np.std(midpoint_error_list)

    # Calculate the maximum errors
    max_slope_error = np.max(slope_error_list)
    max_midpoint_error = np.max(midpoint_error_list)

    # Calculate the differences between errors in successive frames
    diff_slope_error = np.abs(np.diff(slope_error_list))
    diff_midpoint_error = np.abs(np.diff(midpoint_error_list))

    # Calculate the number of jumps in the errors
    num_slope_error_jumps = np.sum(
        diff_slope_error > slope_error_jump_threshold)
    num_midpoint_error_jumps = np.sum(
        diff_midpoint_error > midpoint_error_jump_threshold)

    # Create a dictionary to store the results
    sequence_results = {
        'average_slope_error': average_slope_error,
        'average_midpoint_error': average_midpoint_error,
        'stddev_slope_error': stddev_slope_error,
        'stddev_midpoint_error': stddev_midpoint_error,
        'max_slope_error': max_slope_error,
        'max_midpoint_error': max_midpoint_error,
        'num_slope_error_jumps': num_slope_error_jumps,
        'num_midpoint_error_jumps': num_midpoint_error_jumps
    }

    return sequence_results


import numpy as np
import cv2
import matplotlib.pyplot as plt


def xy_points_to_slope_midpoint(xy_points):
    """
    Given two points, return the slope and midpoint of the line

    Args:
    xy_points: list of two points, each point is a list of two elements
    Points are in the form of [x, y], where x and y are normalized to [0, 1]

    Returns:
    slope: Slope of the line
    midpoint : Midpoint is in the form of [x,y], and is also normalized to [0, 1]
    """

    x1, y1, x2, y2 = xy_points[0][0], xy_points[0][1], xy_points[1][
        0], xy_points[1][1]
    slope = (y2 - y1) / (x2 - x1)

    midpoint_x = 0.5
    midpoint_y = slope * (0.5 - x1) + y1
    midpoint = [midpoint_x, midpoint_y]
    return slope, midpoint


def calculate_horizon_error(annotated_horizon, proposed_horizon):
    """
    Calculate the error between the annotated horizon and the proposed horizon

    Args:
    annotated_horizon: list of two points, each point is a list of two elements
    Points are in the form of [x, y], where x and y are normalized to [0, 1]
    proposed_horizon: list of two points, each point is a list of two elements
    Points are in the form of [x, y], where x and y are normalized to [0, 1]

    Returns:
    slope_error: Error in the slope of the lines
    midpoint_error: Error in the midpoint_y of the lines
    """

    slope_annotated, midpoint_annotated = xy_points_to_slope_midpoint(
        annotated_horizon)
    slope_proposed, midpoint_proposed = xy_points_to_slope_midpoint(
        proposed_horizon)

    slope_error = abs(slope_annotated - slope_proposed)
    midpoint_error = abs(midpoint_annotated[1] - midpoint_proposed[1])

    return slope_error, midpoint_error


def calculate_horizon_error_across_sequence(slope_error_list,
                                            midpoint_error_list,
                                            slope_error_jump_threshold,
                                            midpoint_error_jump_threshold):
    """
    Calculate the error statistics across a sequence of frames

    Args:
    slope_error_list: List of errors in the slope of the lines
    midpoint_error_list: List of errors in the midpoint_y of the lines

    Returns:
    average_slope_error: Average error in the slope of the lines
    average_midpoint_error: Average error in the midpoint_y of the lines
    """

    # Calculate the average and standard deviation of the errors
    average_slope_error = np.mean(slope_error_list)
    average_midpoint_error = np.mean(midpoint_error_list)

    stddev_slope_error = np.std(slope_error_list)
    stddev_midpoint_error = np.std(midpoint_error_list)

    # Calculate the maximum errors
    max_slope_error = np.max(slope_error_list)
    max_midpoint_error = np.max(midpoint_error_list)

    # Calculate the differences between errors in successive frames
    diff_slope_error = np.abs(np.diff(slope_error_list))
    diff_midpoint_error = np.abs(np.diff(midpoint_error_list))

    # Calculate the number of jumps in the errors
    num_slope_error_jumps = np.sum(
        diff_slope_error > slope_error_jump_threshold)
    num_midpoint_error_jumps = np.sum(
        diff_midpoint_error > midpoint_error_jump_threshold)

    # Create a dictionary to store the results
    sequence_results = {
        'average_slope_error': average_slope_error,
        'average_midpoint_error': average_midpoint_error,
        'stddev_slope_error': stddev_slope_error,
        'stddev_midpoint_error': stddev_midpoint_error,
        'max_slope_error': max_slope_error,
        'max_midpoint_error': max_midpoint_error,
        'num_slope_error_jumps': num_slope_error_jumps,
        'num_midpoint_error_jumps': num_midpoint_error_jumps
    }

    return sequence_results


def slope_to_roll(slope):
    """
    Convert the slope of the horizon to roll

    Args:
    slope: Slope of the horizon

    Returns:
    roll: Roll in degrees
    """
    roll = np.arctan(slope) * 180 / np.pi
    return roll


def roll_to_slope(roll):
    """
    Convert the roll of the horizon to slope

    Args:
    roll: Roll of the horizon in degrees

    Returns:
    slope: Slope of the horizon
    """
    slope = np.tan(roll * np.pi / 180)
    return slope


def midpoint_to_pitch(midpoint, vertical_fov_degrees):
    """
    Convert the midpoint of the horizon to pitch

    Args:
    midpoint: Midpoint of the horizon
    vertical_fov_degrees: Vertical field of view of the camera in degrees

    Returns:
    pitch: Pitch in degrees
    """
    pitch = midpoint * vertical_fov_degrees
    return pitch


def pitch_to_midpoint(pitch, vertical_fov_degrees):
    """
    Convert the pitch of the horizon to midpoint

    Args:
    pitch: Pitch of the horizon in degrees
    vertical_fov_degrees: Vertical field of view of the camera in degrees

    Returns:
    midpoint: Midpoint of the horizon
    """
    midpoint = pitch / vertical_fov_degrees
    return midpoint


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION,
                                                _KWARGS_DESCRIPTION)
class horizonmetrics(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def __init__(self,
                 slope_threshold=0.1,
                 midpoint_threshold=0.1,
                 vertical_fov_degrees=25.6,
                 **kwargs):
        super().__init__(**kwargs)
        self.slope_threshold = slope_threshold
        self.midpoint_threshold = midpoint_threshold
        self.vertical_fov_degrees = vertical_fov_degrees
        self.predictions = None
        self.ground_truth_det = None
        self.slope_error_list = None
        self.midpoint_error_list = None

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('int64'),
                'references': datasets.Value('int64'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"])

    def add(self, *, predictions, references, **kwargs):
        """
        Update the predictions and ground truth detections.

        Parameters
        ----------
        predictions : list
            List of predicted horizons.
        ground_truth_det : list
            List of ground truth horizons.

        """
        self.predictions = predictions
        self.ground_truth_det = references
        self.slope_error_list = []
        self.midpoint_error_list = []

        for annotated_horizon, proposed_horizon in zip(self.ground_truth_det,
                                                       self.predictions):
            slope_error, midpoint_error = calculate_horizon_error(
                annotated_horizon, proposed_horizon)
            self.slope_error_list.append(slope_error)
            self.midpoint_error_list.append(midpoint_error)

    def _compute(self, predictions, references):
        """
        Compute the horizon error across the sequence.

        Returns
        -------
        float
            The computed horizon error.

        """
        return calculate_horizon_error_across_sequence(
            self.slope_error_list, self.midpoint_error_list,
            self.slope_threshold, self.midpoint_threshold)

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass