Spaces:
Sleeping
Sleeping
File size: 1,365 Bytes
4db9a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import pandas as pd
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
title = "๐๊ณ ๋ฏผ ํด๊ฒฐ ๋์ ์ถ์ฒ ์ฑ๋ด๐"
description = "๊ณ ๋ฏผ์ด ๋ฌด์์ธ๊ฐ์? ๊ณ ๋ฏผ ํด๊ฒฐ์ ๋์์ค ์ฑ
์ ์ถ์ฒํด๋๋ฆฝ๋๋ค"
examples = [["์์ฆ ์ ์ด ์ ์จ๋ค"]]
model = SentenceTransformer('jhgan/ko-sroberta-multitask')
df = pd.read_pickle('BookData_emb.pkl')
df_emb = df[['์ํ์๋ฒ ๋ฉ']].copy()
def recommend(message):
embedding = model.encode(message)
df_emb['๊ฑฐ๋ฆฌ'] = df_emb['์ํ์๋ฒ ๋ฉ'].map(lambda x: cosine_similarity([embedding], [x]).squeeze())
answer = df.loc[df_emb['๊ฑฐ๋ฆฌ'].idxmax()]
Book_title = answer['์ ๋ชฉ']
Book_author = answer['์๊ฐ']
Book_publisher = answer['์ถํ์ฌ']
Book_comment = answer['์ํ']
return Book_title
gr.ChatInterface(
fn=recommend,
textbox=gr.Textbox(placeholder="๋ง๊ฑธ์ด์ฃผ์ธ์..", container=False, scale=7),
title="์ด๋ค ์ฑ๋ด์ ์ํ์ฌ๋ฏธ๊น?",
description="๋ฌผ์ด๋ณด๋ฉด ๋ตํ๋ ์ฑ๋ด์๋ฏธ๋ค.",
theme="soft",
examples=[["์๋ฝ"], ["์์ฆ ๋ฅ๋ค ใ
ใ
"], ["์ ์ฌ๋ฉ๋ด ์ถ์ฒ๋ฐ๋, ์ง์ฅ ์งฌ๋ฝ ํ 1"]],
retry_btn="๋ค์๋ณด๋ด๊ธฐ โฉ",
undo_btn="์ด์ ์ฑ ์ญ์ โ",
clear_btn="์ ์ฑ ์ญ์ ๐ซ").launch() |