|
import gradio as gr |
|
import pandas as pd |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
title = "πκ³ λ―Ό ν΄κ²° λμ μΆμ² μ±λ΄π" |
|
description = "κ³ λ―Όμ΄ λ¬΄μμΈκ°μ? κ³ λ―Ό ν΄κ²°μ λμμ€ μ±
μ μΆμ²ν΄λ립λλ€" |
|
examples = [["μμ¦ μ μ΄ μ μ¨λ€"]] |
|
|
|
|
|
model = SentenceTransformer('jhgan/ko-sroberta-multitask') |
|
|
|
def response(message): |
|
embedding = model.encode(message) |
|
df['distance'] = df['embedding'].map(lambda x: cosine_similarity([embedding], [x]).squeeze()) |
|
answer = df.loc[df['distance'].idxmax()] |
|
Book_title = answer['μ λͺ©'] |
|
Book_author = answer['μκ°'] |
|
Book_publisher = answer['μΆνμ¬'] |
|
Book_comment = answer['μν'] |
|
return print(message) |
|
|
|
|
|
gr.Interface( |
|
fn=response, |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
inputs=["text", "state"], |
|
outputs=["chatbot", "state"], |
|
theme="finlaymacklon/boxy_violet", |
|
).launch() |