File size: 980 Bytes
56f1953 4a7c6e4 56f1953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
import pandas as pd
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
title = "πκ³ λ―Ό ν΄κ²° λμ μΆμ² μ±λ΄π"
description = "κ³ λ―Όμ΄ λ¬΄μμΈκ°μ? κ³ λ―Ό ν΄κ²°μ λμμ€ μ±
μ μΆμ²ν΄λ립λλ€"
examples = [["μμ¦ μ μ΄ μ μ¨λ€"]]
model = SentenceTransformer('jhgan/ko-sroberta-multitask')
def response(message):
embedding = model.encode(message)
df['distance'] = df['embedding'].map(lambda x: cosine_similarity([embedding], [x]).squeeze())
answer = df.loc[df['distance'].idxmax()]
Book_title = answer['μ λͺ©']
Book_author = answer['μκ°']
Book_publisher = answer['μΆνμ¬']
Book_comment = answer['μν']
return print(message)
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=["text", "state"],
outputs=["chatbot", "state"],
theme="finlaymacklon/boxy_violet",
).launch() |