B
commited on
other files
Browse files- .gitattributes +2 -0
- Infy financial report/INFY_2022_2023.pdf +3 -0
- Infy financial report/INFY_2023_2024.pdf +3 -0
- README.md +41 -12
- nltk_data/corpora/stopwords/english +198 -0
- requirements.txt +237 -0
- utils.py +320 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Infy[[:space:]]financial[[:space:]]report/INFY_2022_2023.pdf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Infy[[:space:]]financial[[:space:]]report/INFY_2023_2024.pdf filter=lfs diff=lfs merge=lfs -text
|
Infy financial report/INFY_2022_2023.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33cd6264b51e3979680d245eb917015058aff9652c3c1d9ee1b46a938272e858
|
3 |
+
size 13894776
|
Infy financial report/INFY_2023_2024.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0a9bb9e802aff5f09733b8c78c88e9878732ac46e0fb29754c6da87ad47326a
|
3 |
+
size 11441269
|
README.md
CHANGED
@@ -1,12 +1,41 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Financial Chatbot for Infosys Financial Reports
|
2 |
+
------------------------------------------------
|
3 |
+
- This is a Retrieval-Augmented Generation (RAG) chatbot designed to answer questions about Infosys financial statements from the last two years (2022-2024).
|
4 |
+
- The chatbot uses open-source models and advanced retrieval techniques to provide accurate and concise answers.
|
5 |
+
|
6 |
+
Project Structure
|
7 |
+
------------------
|
8 |
+
- The project is organized as follows:
|
9 |
+
```
|
10 |
+
Financial-Chatbot/
|
11 |
+
├── app.py # Streamlit application interface
|
12 |
+
├── chroma_db/ # Chroma vector database storage
|
13 |
+
├── Infy financial report/ # Folder containing Infosys financial PDFs
|
14 |
+
│ ├── INFY_2022_2023.pdf
|
15 |
+
│ └── INFY_2023_2024.pdf
|
16 |
+
├── requirements.txt # Python dependencies
|
17 |
+
├── utils.py # Core functionality and RAG implementation
|
18 |
+
└── README.md # This file
|
19 |
+
```
|
20 |
+
|
21 |
+
Installation
|
22 |
+
--------------
|
23 |
+
Python Version: ```Python 3.10.xx```
|
24 |
+
|
25 |
+
Python lib requirements: ```pip install -r requirements.txt```
|
26 |
+
|
27 |
+
|
28 |
+
Place PDFs:
|
29 |
+
------------
|
30 |
+
- Ensure the Infosys financial reports (INFY_2022_2023.pdf and INFY_2023_2024.pdf) are placed in the Infy financial report/ folder.
|
31 |
+
|
32 |
+
|
33 |
+
Running the Application
|
34 |
+
------------------------
|
35 |
+
- To start the chatbot, run the following command:
|
36 |
+
|
37 |
+
```streamlit run app.py --server.enableCORS false```
|
38 |
+
|
39 |
+
- The application will start and provide a local URL (e.g., http://localhost:8501). Open this URL in your browser to interact with the chatbot.
|
40 |
+
|
41 |
+
|
nltk_data/corpora/stopwords/english
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a
|
2 |
+
about
|
3 |
+
above
|
4 |
+
after
|
5 |
+
again
|
6 |
+
against
|
7 |
+
ain
|
8 |
+
all
|
9 |
+
am
|
10 |
+
an
|
11 |
+
and
|
12 |
+
any
|
13 |
+
are
|
14 |
+
aren
|
15 |
+
aren't
|
16 |
+
as
|
17 |
+
at
|
18 |
+
be
|
19 |
+
because
|
20 |
+
been
|
21 |
+
before
|
22 |
+
being
|
23 |
+
below
|
24 |
+
between
|
25 |
+
both
|
26 |
+
but
|
27 |
+
by
|
28 |
+
can
|
29 |
+
couldn
|
30 |
+
couldn't
|
31 |
+
d
|
32 |
+
did
|
33 |
+
didn
|
34 |
+
didn't
|
35 |
+
do
|
36 |
+
does
|
37 |
+
doesn
|
38 |
+
doesn't
|
39 |
+
doing
|
40 |
+
don
|
41 |
+
don't
|
42 |
+
down
|
43 |
+
during
|
44 |
+
each
|
45 |
+
few
|
46 |
+
for
|
47 |
+
from
|
48 |
+
further
|
49 |
+
had
|
50 |
+
hadn
|
51 |
+
hadn't
|
52 |
+
has
|
53 |
+
hasn
|
54 |
+
hasn't
|
55 |
+
have
|
56 |
+
haven
|
57 |
+
haven't
|
58 |
+
having
|
59 |
+
he
|
60 |
+
he'd
|
61 |
+
he'll
|
62 |
+
her
|
63 |
+
here
|
64 |
+
hers
|
65 |
+
herself
|
66 |
+
he's
|
67 |
+
him
|
68 |
+
himself
|
69 |
+
his
|
70 |
+
how
|
71 |
+
i
|
72 |
+
i'd
|
73 |
+
if
|
74 |
+
i'll
|
75 |
+
i'm
|
76 |
+
in
|
77 |
+
into
|
78 |
+
is
|
79 |
+
isn
|
80 |
+
isn't
|
81 |
+
it
|
82 |
+
it'd
|
83 |
+
it'll
|
84 |
+
it's
|
85 |
+
its
|
86 |
+
itself
|
87 |
+
i've
|
88 |
+
just
|
89 |
+
ll
|
90 |
+
m
|
91 |
+
ma
|
92 |
+
me
|
93 |
+
mightn
|
94 |
+
mightn't
|
95 |
+
more
|
96 |
+
most
|
97 |
+
mustn
|
98 |
+
mustn't
|
99 |
+
my
|
100 |
+
myself
|
101 |
+
needn
|
102 |
+
needn't
|
103 |
+
no
|
104 |
+
nor
|
105 |
+
not
|
106 |
+
now
|
107 |
+
o
|
108 |
+
of
|
109 |
+
off
|
110 |
+
on
|
111 |
+
once
|
112 |
+
only
|
113 |
+
or
|
114 |
+
other
|
115 |
+
our
|
116 |
+
ours
|
117 |
+
ourselves
|
118 |
+
out
|
119 |
+
over
|
120 |
+
own
|
121 |
+
re
|
122 |
+
s
|
123 |
+
same
|
124 |
+
shan
|
125 |
+
shan't
|
126 |
+
she
|
127 |
+
she'd
|
128 |
+
she'll
|
129 |
+
she's
|
130 |
+
should
|
131 |
+
shouldn
|
132 |
+
shouldn't
|
133 |
+
should've
|
134 |
+
so
|
135 |
+
some
|
136 |
+
such
|
137 |
+
t
|
138 |
+
than
|
139 |
+
that
|
140 |
+
that'll
|
141 |
+
the
|
142 |
+
their
|
143 |
+
theirs
|
144 |
+
them
|
145 |
+
themselves
|
146 |
+
then
|
147 |
+
there
|
148 |
+
these
|
149 |
+
they
|
150 |
+
they'd
|
151 |
+
they'll
|
152 |
+
they're
|
153 |
+
they've
|
154 |
+
this
|
155 |
+
those
|
156 |
+
through
|
157 |
+
to
|
158 |
+
too
|
159 |
+
under
|
160 |
+
until
|
161 |
+
up
|
162 |
+
ve
|
163 |
+
very
|
164 |
+
was
|
165 |
+
wasn
|
166 |
+
wasn't
|
167 |
+
we
|
168 |
+
we'd
|
169 |
+
we'll
|
170 |
+
we're
|
171 |
+
were
|
172 |
+
weren
|
173 |
+
weren't
|
174 |
+
we've
|
175 |
+
what
|
176 |
+
when
|
177 |
+
where
|
178 |
+
which
|
179 |
+
while
|
180 |
+
who
|
181 |
+
whom
|
182 |
+
why
|
183 |
+
will
|
184 |
+
with
|
185 |
+
won
|
186 |
+
won't
|
187 |
+
wouldn
|
188 |
+
wouldn't
|
189 |
+
y
|
190 |
+
you
|
191 |
+
you'd
|
192 |
+
you'll
|
193 |
+
your
|
194 |
+
you're
|
195 |
+
yours
|
196 |
+
yourself
|
197 |
+
yourselves
|
198 |
+
you've
|
requirements.txt
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pysqlite3-binary
|
2 |
+
absl-py==2.1.0
|
3 |
+
accelerate==1.4.0
|
4 |
+
aiohappyeyeballs==2.5.0
|
5 |
+
aiohttp==3.11.13
|
6 |
+
aiosignal==1.3.2
|
7 |
+
altair==5.5.0
|
8 |
+
annotated-types==0.7.0
|
9 |
+
anyio==4.8.0
|
10 |
+
argon2-cffi==23.1.0
|
11 |
+
argon2-cffi-bindings==21.2.0
|
12 |
+
arrow==1.3.0
|
13 |
+
asgiref==3.8.1
|
14 |
+
asttokens==3.0.0
|
15 |
+
astunparse==1.6.3
|
16 |
+
async-lru==2.0.4
|
17 |
+
async-timeout==4.0.3
|
18 |
+
attrs==25.1.0
|
19 |
+
babel==2.17.0
|
20 |
+
backoff==2.2.1
|
21 |
+
bcrypt==4.3.0
|
22 |
+
beautifulsoup4==4.13.3
|
23 |
+
bitsandbytes==0.45.3
|
24 |
+
bleach==6.2.0
|
25 |
+
blinker==1.9.0
|
26 |
+
build==1.2.2.post1
|
27 |
+
cachetools==5.5.2
|
28 |
+
certifi==2025.1.31
|
29 |
+
cffi==1.17.1
|
30 |
+
charset-normalizer==3.4.1
|
31 |
+
chroma-hnswlib==0.7.6
|
32 |
+
chromadb==0.6.3
|
33 |
+
click==8.1.8
|
34 |
+
coloredlogs==15.0.1
|
35 |
+
comm==0.2.2
|
36 |
+
dataclasses-json==0.6.7
|
37 |
+
debugpy==1.8.13
|
38 |
+
decorator==5.2.1
|
39 |
+
defusedxml==0.7.1
|
40 |
+
Deprecated==1.2.18
|
41 |
+
distro==1.9.0
|
42 |
+
durationpy==0.9
|
43 |
+
exceptiongroup==1.2.2
|
44 |
+
executing==2.2.0
|
45 |
+
faiss-cpu==1.10.0
|
46 |
+
fastapi==0.115.11
|
47 |
+
fastjsonschema==2.21.1
|
48 |
+
filelock==3.17.0
|
49 |
+
flatbuffers==25.2.10
|
50 |
+
fqdn==1.5.1
|
51 |
+
frozenlist==1.5.0
|
52 |
+
fsspec==2025.3.0
|
53 |
+
gast==0.6.0
|
54 |
+
gitdb==4.0.12
|
55 |
+
GitPython==3.1.44
|
56 |
+
google-auth==2.38.0
|
57 |
+
google-pasta==0.2.0
|
58 |
+
googleapis-common-protos==1.69.1
|
59 |
+
greenlet==3.1.1
|
60 |
+
grpcio==1.71.0
|
61 |
+
h11==0.14.0
|
62 |
+
h5py==3.13.0
|
63 |
+
httpcore==1.0.7
|
64 |
+
httptools==0.6.4
|
65 |
+
httpx==0.28.1
|
66 |
+
httpx-sse==0.4.0
|
67 |
+
huggingface-hub==0.29.3
|
68 |
+
humanfriendly==10.0
|
69 |
+
idna==3.10
|
70 |
+
importlib_metadata==8.5.0
|
71 |
+
importlib_resources==6.5.2
|
72 |
+
ipykernel==6.29.5
|
73 |
+
ipython==8.34.0
|
74 |
+
ipywidgets==8.1.5
|
75 |
+
isoduration==20.11.0
|
76 |
+
jedi==0.19.2
|
77 |
+
Jinja2==3.1.6
|
78 |
+
joblib==1.4.2
|
79 |
+
json5==0.10.0
|
80 |
+
jsonpatch==1.33
|
81 |
+
jsonpointer==3.0.0
|
82 |
+
jsonschema==4.23.0
|
83 |
+
jsonschema-specifications==2024.10.1
|
84 |
+
jupyter-events==0.12.0
|
85 |
+
jupyter-lsp==2.2.5
|
86 |
+
jupyter_client==8.6.3
|
87 |
+
jupyter_core==5.7.2
|
88 |
+
jupyter_server==2.15.0
|
89 |
+
jupyter_server_terminals==0.5.3
|
90 |
+
jupyterlab==4.3.5
|
91 |
+
jupyterlab_pygments==0.3.0
|
92 |
+
jupyterlab_server==2.27.3
|
93 |
+
jupyterlab_widgets==3.0.13
|
94 |
+
keras==3.9.0
|
95 |
+
kubernetes==32.0.1
|
96 |
+
langchain==0.3.20
|
97 |
+
langchain-community==0.3.19
|
98 |
+
langchain-core==0.3.43
|
99 |
+
langchain-huggingface==0.1.2
|
100 |
+
langchain-text-splitters==0.3.6
|
101 |
+
langsmith==0.3.13
|
102 |
+
libclang==18.1.1
|
103 |
+
Markdown==3.7
|
104 |
+
markdown-it-py==3.0.0
|
105 |
+
MarkupSafe==3.0.2
|
106 |
+
marshmallow==3.26.1
|
107 |
+
matplotlib-inline==0.1.7
|
108 |
+
mdurl==0.1.2
|
109 |
+
mistune==3.1.2
|
110 |
+
ml-dtypes==0.4.1
|
111 |
+
mmh3==5.1.0
|
112 |
+
monotonic==1.6
|
113 |
+
mpmath==1.3.0
|
114 |
+
multidict==6.1.0
|
115 |
+
mypy-extensions==1.0.0
|
116 |
+
namex==0.0.8
|
117 |
+
narwhals==1.30.0
|
118 |
+
nbclient==0.10.2
|
119 |
+
nbconvert==7.16.6
|
120 |
+
nbformat==5.10.4
|
121 |
+
nest-asyncio==1.6.0
|
122 |
+
networkx==3.4.2
|
123 |
+
nltk==3.9.1
|
124 |
+
notebook_shim==0.2.4
|
125 |
+
numpy==2.0.2
|
126 |
+
oauthlib==3.2.2
|
127 |
+
onnxruntime==1.21.0
|
128 |
+
opentelemetry-api==1.30.0
|
129 |
+
opentelemetry-exporter-otlp-proto-common==1.30.0
|
130 |
+
opentelemetry-exporter-otlp-proto-grpc==1.30.0
|
131 |
+
opentelemetry-instrumentation==0.51b0
|
132 |
+
opentelemetry-instrumentation-asgi==0.51b0
|
133 |
+
opentelemetry-instrumentation-fastapi==0.51b0
|
134 |
+
opentelemetry-proto==1.30.0
|
135 |
+
opentelemetry-sdk==1.30.0
|
136 |
+
opentelemetry-semantic-conventions==0.51b0
|
137 |
+
opentelemetry-util-http==0.51b0
|
138 |
+
opt_einsum==3.4.0
|
139 |
+
optree==0.14.1
|
140 |
+
orjson==3.10.15
|
141 |
+
overrides==7.7.0
|
142 |
+
packaging==24.2
|
143 |
+
pandas==2.2.3
|
144 |
+
pandocfilters==1.5.1
|
145 |
+
parso==0.8.4
|
146 |
+
pexpect==4.9.0
|
147 |
+
pillow==11.1.0
|
148 |
+
platformdirs==4.3.6
|
149 |
+
posthog==3.19.1
|
150 |
+
prometheus_client==0.21.1
|
151 |
+
prompt_toolkit==3.0.50
|
152 |
+
propcache==0.3.0
|
153 |
+
protobuf==5.29.3
|
154 |
+
psutil==7.0.0
|
155 |
+
ptyprocess==0.7.0
|
156 |
+
pure_eval==0.2.3
|
157 |
+
pyarrow==19.0.1
|
158 |
+
pyasn1==0.6.1
|
159 |
+
pyasn1_modules==0.4.1
|
160 |
+
pycparser==2.22
|
161 |
+
pydantic==2.10.6
|
162 |
+
pydantic-settings==2.8.1
|
163 |
+
pydantic_core==2.27.2
|
164 |
+
pydeck==0.9.1
|
165 |
+
Pygments==2.19.1
|
166 |
+
pypdf==5.3.1
|
167 |
+
PyPika==0.48.9
|
168 |
+
pyproject_hooks==1.2.0
|
169 |
+
python-dateutil==2.9.0.post0
|
170 |
+
python-dotenv==1.0.1
|
171 |
+
python-json-logger==3.3.0
|
172 |
+
pytz==2025.1
|
173 |
+
PyYAML==6.0.2
|
174 |
+
pyzmq==26.2.1
|
175 |
+
rank-bm25==0.2.2
|
176 |
+
referencing==0.36.2
|
177 |
+
regex==2024.11.6
|
178 |
+
requests==2.32.3
|
179 |
+
requests-oauthlib==2.0.0
|
180 |
+
requests-toolbelt==1.0.0
|
181 |
+
rfc3339-validator==0.1.4
|
182 |
+
rfc3986-validator==0.1.1
|
183 |
+
rich==13.9.4
|
184 |
+
rpds-py==0.23.1
|
185 |
+
rsa==4.9
|
186 |
+
safetensors==0.5.3
|
187 |
+
scikit-learn==1.6.1
|
188 |
+
scipy==1.15.2
|
189 |
+
Send2Trash==1.8.3
|
190 |
+
sentence-transformers==3.4.1
|
191 |
+
shellingham==1.5.4
|
192 |
+
six==1.17.0
|
193 |
+
smmap==5.0.2
|
194 |
+
sniffio==1.3.1
|
195 |
+
soupsieve==2.6
|
196 |
+
SQLAlchemy==2.0.38
|
197 |
+
stack-data==0.6.3
|
198 |
+
starlette==0.46.1
|
199 |
+
streamlit==1.43.1
|
200 |
+
sympy==1.13.1
|
201 |
+
tenacity==9.0.0
|
202 |
+
termcolor==2.5.0
|
203 |
+
terminado==0.18.1
|
204 |
+
tf_keras==2.18.0
|
205 |
+
threadpoolctl==3.5.0
|
206 |
+
tinycss2==1.4.0
|
207 |
+
tokenizers==0.21.0
|
208 |
+
toml==0.10.2
|
209 |
+
tomli==2.2.1
|
210 |
+
torch==2.6.0
|
211 |
+
tornado==6.4.2
|
212 |
+
tqdm==4.67.1
|
213 |
+
traitlets==5.14.3
|
214 |
+
transformers==4.49.0
|
215 |
+
triton==3.2.0
|
216 |
+
typer==0.15.2
|
217 |
+
types-python-dateutil==2.9.0.20241206
|
218 |
+
typing-inspect==0.9.0
|
219 |
+
typing_extensions==4.12.2
|
220 |
+
tzdata==2025.1
|
221 |
+
uri-template==1.3.0
|
222 |
+
urllib3==2.3.0
|
223 |
+
uvicorn==0.34.0
|
224 |
+
uvloop==0.21.0
|
225 |
+
watchdog==6.0.0
|
226 |
+
watchfiles==1.0.4
|
227 |
+
wcwidth==0.2.13
|
228 |
+
webcolors==24.11.1
|
229 |
+
webencodings==0.5.1
|
230 |
+
websocket-client==1.8.0
|
231 |
+
websockets==15.0.1
|
232 |
+
Werkzeug==3.1.3
|
233 |
+
widgetsnbextension==4.0.13
|
234 |
+
wrapt==1.17.2
|
235 |
+
yarl==1.18.3
|
236 |
+
zipp==3.21.0
|
237 |
+
zstandard==0.23.0
|
utils.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils.py
|
2 |
+
"""
|
3 |
+
Financial Chatbot Utilities
|
4 |
+
Core functionality for RAG-based financial chatbot
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import nltk
|
10 |
+
from nltk.corpus import stopwords
|
11 |
+
from collections import deque
|
12 |
+
from typing import Tuple
|
13 |
+
import torch
|
14 |
+
|
15 |
+
import streamlit as st
|
16 |
+
|
17 |
+
# LangChain components
|
18 |
+
from langchain_community.document_loaders import PyPDFLoader
|
19 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
20 |
+
from langchain_community.vectorstores import Chroma
|
21 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
22 |
+
|
23 |
+
# Models and ML
|
24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
25 |
+
from rank_bm25 import BM25Okapi
|
26 |
+
from sentence_transformers import CrossEncoder
|
27 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
28 |
+
|
29 |
+
import sys
|
30 |
+
|
31 |
+
sys.path.append('/mount/src/gen_ai_dev')
|
32 |
+
|
33 |
+
# these three lines swap the stdlib sqlite3 lib with the pysqlite3 package
|
34 |
+
import pysqlite3
|
35 |
+
import sys
|
36 |
+
sys.modules["sqlite3"] = pysqlite3
|
37 |
+
|
38 |
+
__import__('pysqlite3')
|
39 |
+
import sys
|
40 |
+
|
41 |
+
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
42 |
+
|
43 |
+
# Initialize NLTK stopwords
|
44 |
+
# nltk.download('stopwords')
|
45 |
+
# stop_words = set(stopwords.words('english'))
|
46 |
+
nltk.data.path.append('./nltk_data') # Point to local NLTK data
|
47 |
+
stop_words = set(nltk.corpus.stopwords.words('english'))
|
48 |
+
|
49 |
+
# Configuration
|
50 |
+
DATA_PATH = "./Infy financial report/"
|
51 |
+
DATA_FILES = ["INFY_2022_2023.pdf", "INFY_2023_2024.pdf"]
|
52 |
+
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
53 |
+
LLM_MODEL = "HuggingFaceH4/zephyr-7b-beta" #"microsoft/phi-2"
|
54 |
+
|
55 |
+
# Environment settings
|
56 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
57 |
+
os.environ["CHROMA_DISABLE_TELEMETRY"] = "true"
|
58 |
+
|
59 |
+
# Suppress specific warnings
|
60 |
+
import warnings
|
61 |
+
|
62 |
+
warnings.filterwarnings("ignore", message=".*oneDNN custom operations.*")
|
63 |
+
warnings.filterwarnings("ignore", message=".*cuBLAS factory.*")
|
64 |
+
|
65 |
+
|
66 |
+
# ------------------------------
|
67 |
+
# Load and Chunk Documents
|
68 |
+
# ------------------------------
|
69 |
+
def load_and_chunk_documents():
|
70 |
+
"""Load and split PDF documents into manageable chunks"""
|
71 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
72 |
+
chunk_size=500,
|
73 |
+
chunk_overlap=100,
|
74 |
+
separators=["\n\n", "\n", ".", " ", ""]
|
75 |
+
)
|
76 |
+
|
77 |
+
all_chunks = []
|
78 |
+
for file in DATA_FILES:
|
79 |
+
try:
|
80 |
+
loader = PyPDFLoader(os.path.join(DATA_PATH, file))
|
81 |
+
pages = loader.load()
|
82 |
+
all_chunks.extend(text_splitter.split_documents(pages))
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error loading {file}: {e}")
|
85 |
+
|
86 |
+
return all_chunks
|
87 |
+
|
88 |
+
|
89 |
+
# ------------------------------
|
90 |
+
# Vector Store and Search Setup
|
91 |
+
# ------------------------------
|
92 |
+
text_chunks = load_and_chunk_documents()
|
93 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
94 |
+
|
95 |
+
|
96 |
+
@st.cache_resource(show_spinner=False)
|
97 |
+
def load_vector_db():
|
98 |
+
# Load and chunk documents
|
99 |
+
text_chunks = load_and_chunk_documents()
|
100 |
+
|
101 |
+
# Initialize embeddings
|
102 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
103 |
+
|
104 |
+
# Create and return Chroma vector store
|
105 |
+
return Chroma.from_documents(
|
106 |
+
documents=text_chunks,
|
107 |
+
embedding=embeddings,
|
108 |
+
persist_directory="./chroma_db"
|
109 |
+
)
|
110 |
+
|
111 |
+
# Initialize vector_db
|
112 |
+
vector_db = load_vector_db()
|
113 |
+
|
114 |
+
# BM25 setup
|
115 |
+
bm25_corpus = [chunk.page_content for chunk in text_chunks]
|
116 |
+
bm25_tokenized = [doc.split() for doc in bm25_corpus]
|
117 |
+
bm25 = BM25Okapi(bm25_tokenized)
|
118 |
+
|
119 |
+
# Cross-encoder for re-ranking
|
120 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
121 |
+
|
122 |
+
|
123 |
+
# ------------------------------
|
124 |
+
# Conversation Memory
|
125 |
+
# ------------------------------
|
126 |
+
class ConversationMemory:
|
127 |
+
"""Stores recent conversation context"""
|
128 |
+
|
129 |
+
def __init__(self, max_size=5):
|
130 |
+
self.buffer = deque(maxlen=max_size)
|
131 |
+
|
132 |
+
def add_interaction(self, query: str, response: str) -> None:
|
133 |
+
self.buffer.append((query, response))
|
134 |
+
|
135 |
+
def get_context(self) -> str:
|
136 |
+
return "\n".join(
|
137 |
+
[f"Previous Q: {q}\nPrevious A: {r}" for q, r in self.buffer]
|
138 |
+
)
|
139 |
+
|
140 |
+
memory = ConversationMemory(max_size=3)
|
141 |
+
|
142 |
+
# ------------------------------
|
143 |
+
# Hybrid Retrieval System
|
144 |
+
# ------------------------------
|
145 |
+
def hybrid_retrieval(query: str, top_k: int = 5) -> str:
|
146 |
+
try:
|
147 |
+
# Semantic search
|
148 |
+
semantic_results = vector_db.similarity_search(query, k=top_k * 2)
|
149 |
+
print(f"\n\n[For Debug Only] Semantic Results: {semantic_results}")
|
150 |
+
|
151 |
+
# Keyword search
|
152 |
+
keyword_results = bm25.get_top_n(query.split(), bm25_corpus, n=top_k * 2)
|
153 |
+
print(f"\n\n[For Debug Only] Keyword Results: {keyword_results}\n\n")
|
154 |
+
|
155 |
+
# Combine and deduplicate results
|
156 |
+
combined = []
|
157 |
+
seen = set()
|
158 |
+
|
159 |
+
for doc in semantic_results:
|
160 |
+
content = doc.page_content
|
161 |
+
if content not in seen:
|
162 |
+
combined.append((content, "semantic"))
|
163 |
+
seen.add(content)
|
164 |
+
|
165 |
+
for doc in keyword_results:
|
166 |
+
if doc not in seen:
|
167 |
+
combined.append((doc, "keyword"))
|
168 |
+
seen.add(doc)
|
169 |
+
|
170 |
+
# Re-rank results using cross-encoder
|
171 |
+
pairs = [(query, content) for content, _ in combined]
|
172 |
+
scores = cross_encoder.predict(pairs)
|
173 |
+
|
174 |
+
# Sort by scores
|
175 |
+
sorted_results = sorted(
|
176 |
+
zip(combined, scores),
|
177 |
+
key=lambda x: x[1],
|
178 |
+
reverse=True
|
179 |
+
)
|
180 |
+
|
181 |
+
final_results = [f"[{source}] {content}" for (content, source), _ in sorted_results[:top_k]]
|
182 |
+
|
183 |
+
memory_context = memory.get_context()
|
184 |
+
if memory_context:
|
185 |
+
final_results.append(f"[memory] {memory_context}")
|
186 |
+
|
187 |
+
return "\n\n".join(final_results)
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
print(f"Retrieval error: {e}")
|
191 |
+
return ""
|
192 |
+
|
193 |
+
|
194 |
+
# ------------------------------
|
195 |
+
# Safety Guardrails
|
196 |
+
# ------------------------------
|
197 |
+
class SafetyGuard:
|
198 |
+
"""Validates input and filters output"""
|
199 |
+
|
200 |
+
def __init__(self):
|
201 |
+
self.financial_terms = {
|
202 |
+
'revenue', 'profit', 'ebitda', 'balance', 'cash',
|
203 |
+
'income', 'fiscal', 'growth', 'margin', 'expense'
|
204 |
+
}
|
205 |
+
self.blocked_topics = {
|
206 |
+
'politics', 'sports', 'entertainment', 'religion',
|
207 |
+
'medical', 'hypothetical', 'opinion', 'personal'
|
208 |
+
}
|
209 |
+
|
210 |
+
def validate_input(self, query: str) -> Tuple[bool, str]:
|
211 |
+
query_lower = query.lower()
|
212 |
+
if any(topic in query_lower for topic in self.blocked_topics):
|
213 |
+
return False, "I only discuss financial topics."
|
214 |
+
# if not any(term in query_lower for term in self.financial_terms):
|
215 |
+
# return False, "Please ask financial questions."
|
216 |
+
return True, ""
|
217 |
+
|
218 |
+
def filter_output(self, response: str) -> str:
|
219 |
+
phrases_to_remove = {
|
220 |
+
"I'm not sure", "I don't know", "maybe",
|
221 |
+
"possibly", "could be", "uncertain", "perhaps"
|
222 |
+
}
|
223 |
+
for phrase in phrases_to_remove:
|
224 |
+
response = response.replace(phrase, "")
|
225 |
+
|
226 |
+
sentences = re.split(r'[.!?]', response)
|
227 |
+
if len(sentences) > 2:
|
228 |
+
response = '. '.join(sentences[:2]) + '.'
|
229 |
+
|
230 |
+
return response.strip()
|
231 |
+
|
232 |
+
|
233 |
+
guard = SafetyGuard()
|
234 |
+
|
235 |
+
# ------------------------------
|
236 |
+
# LLM Initialization
|
237 |
+
# ------------------------------
|
238 |
+
try:
|
239 |
+
@st.cache_resource(show_spinner=False)
|
240 |
+
def load_generator():
|
241 |
+
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL)
|
242 |
+
if torch.cuda.is_available():
|
243 |
+
model = AutoModelForCausalLM.from_pretrained(
|
244 |
+
LLM_MODEL,
|
245 |
+
device_map="auto",
|
246 |
+
torch_dtype=torch.bfloat16,
|
247 |
+
load_in_4bit=True
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
model = AutoModelForCausalLM.from_pretrained(
|
251 |
+
LLM_MODEL,
|
252 |
+
device_map="cpu",
|
253 |
+
torch_dtype=torch.float32
|
254 |
+
)
|
255 |
+
return pipeline(
|
256 |
+
"text-generation",
|
257 |
+
model=model,
|
258 |
+
tokenizer=tokenizer,
|
259 |
+
max_new_tokens=400,
|
260 |
+
do_sample=True,
|
261 |
+
temperature=0.3,
|
262 |
+
top_k=30,
|
263 |
+
top_p=0.9,
|
264 |
+
repetition_penalty=1.2
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
# Later in your generate_answer function:
|
269 |
+
generator = load_generator()
|
270 |
+
except Exception as e:
|
271 |
+
print(f"Error loading model: {e}")
|
272 |
+
raise
|
273 |
+
|
274 |
+
|
275 |
+
# ------------------------------
|
276 |
+
# Response Generation
|
277 |
+
# ------------------------------
|
278 |
+
def extract_final_response(full_response: str) -> str:
|
279 |
+
parts = full_response.split("<|im_start|>assistant")
|
280 |
+
if len(parts) > 1:
|
281 |
+
response = parts[-1].split("<|im_end|>")[0]
|
282 |
+
return re.sub(r'\s+', ' ', response).strip()
|
283 |
+
return full_response
|
284 |
+
|
285 |
+
|
286 |
+
def generate_answer(query: str) -> Tuple[str, float]:
|
287 |
+
try:
|
288 |
+
# Input validation
|
289 |
+
is_valid, msg = guard.validate_input(query)
|
290 |
+
if not is_valid:
|
291 |
+
return msg, 0.0
|
292 |
+
|
293 |
+
# Retrieve context
|
294 |
+
context = hybrid_retrieval(query)
|
295 |
+
|
296 |
+
# Generate response
|
297 |
+
prompt = f"""<|im_start|>system
|
298 |
+
You are a financial analyst. Provide a brief answer using the context.
|
299 |
+
Context: {context}<|im_end|>
|
300 |
+
<|im_start|>user
|
301 |
+
{query}<|im_end|>
|
302 |
+
<|im_start|>assistant
|
303 |
+
Answer:"""
|
304 |
+
|
305 |
+
response = generator(prompt)[0]['generated_text']
|
306 |
+
clean_response = extract_final_response(response)
|
307 |
+
clean_response = guard.filter_output(clean_response)
|
308 |
+
|
309 |
+
# Calculate confidence
|
310 |
+
query_embed = embeddings.embed_query(query)
|
311 |
+
response_embed = embeddings.embed_query(clean_response)
|
312 |
+
confidence = cosine_similarity([query_embed], [response_embed])[0][0]
|
313 |
+
|
314 |
+
# Update memory
|
315 |
+
memory.add_interaction(query, clean_response)
|
316 |
+
|
317 |
+
return clean_response, round(confidence, 2)
|
318 |
+
|
319 |
+
except Exception as e:
|
320 |
+
return f"Error processing request: {e}", 0.0
|