import streamlit as st from components.create_repository import create_repository_form def render_repository_management(): """Render the repository management page""" st.title("🗄️ Repository Management") st.markdown( """ Create and manage your Hugging Face model repositories. A repository is where you store model files, configuration, and documentation. """ ) # Create new repository section created, repo_id = create_repository_form() if created and repo_id: # If repository was created, navigate to model details page st.session_state.selected_model = repo_id st.session_state.page = "model_details" st.rerun() # Tips for repository creation with st.expander("Tips for creating a good repository"): st.markdown( """ ### Best Practices for Model Repositories 1. **Choose a descriptive name** - Use clear, lowercase names with hyphens (e.g., `bert-finetuned-sentiment`) - Avoid generic names like "test" or "model" 2. **Add appropriate tags** - Tags help others discover your model - Include task types (e.g., "text-classification", "object-detection") - Add framework tags (e.g., "pytorch", "tensorflow") 3. **Write a comprehensive model card** - Describe what the model does and how it was trained - Document model limitations and biases - Include performance metrics - Specify intended use cases 4. **Organize your files** - Include all necessary files for model loading - Add configuration files - Include example scripts if helpful 5. **License your model appropriately** - Choose an open-source license if possible - Document any usage restrictions """ )