import streamlit as st import pandas as pd from datetime import datetime import difflib import json def fetch_model_versions(repo_id): """ Fetch model versions from the Hugging Face API. In a real implementation, this would call the HF API to get version history. For now, we'll use demo data. """ # In a production app, you would fetch this from the Hugging Face API # For demo purposes, create some sample version data versions = [ { "version": "v1.0", "commit_id": "abc123", "timestamp": "2023-01-15T10:30:00Z", "author": st.session_state.username, "message": "Initial model release", "files_changed": 5, "performance": {"accuracy": 0.85, "f1": 0.82} }, { "version": "v1.1", "commit_id": "def456", "timestamp": "2023-02-20T14:45:00Z", "author": st.session_state.username, "message": "Improved tokenization", "files_changed": 2, "performance": {"accuracy": 0.87, "f1": 0.84} }, { "version": "v2.0", "commit_id": "ghi789", "timestamp": "2023-03-10T09:15:00Z", "author": st.session_state.username, "message": "Major model architecture upgrade", "files_changed": 12, "performance": {"accuracy": 0.92, "f1": 0.90} } ] return versions def render_version_history(model_info): """Render the version history of a model""" if not model_info: st.error("Model information not found") return repo_id = model_info.modelId st.subheader("🔄 Version History") with st.spinner("Loading version history..."): versions = fetch_model_versions(repo_id) if not versions: st.info("No version history found for this model.") return # Convert to DataFrame for easier display df = pd.DataFrame(versions) # Format timestamp df["timestamp"] = pd.to_datetime(df["timestamp"]).dt.strftime("%Y-%m-%d %H:%M") # Create a cleaner display version display_df = df[["version", "timestamp", "author", "message", "files_changed"]] display_df.columns = ["Version", "Date", "Author", "Commit Message", "Files Changed"] # Show the version history st.dataframe(display_df, use_container_width=True) # Version comparison st.subheader("Compare Versions") col1, col2 = st.columns(2) with col1: base_version = st.selectbox( "Base Version", options=df["version"].tolist(), index=0 ) with col2: compare_version = st.selectbox( "Compare Version", options=[v for v in df["version"].tolist() if v != base_version], index=0 ) if st.button("Compare", use_container_width=True): with st.spinner("Generating comparison..."): # In a real implementation, fetch the actual data from each version # For demo, use the sample performance metrics base_data = df[df["version"] == base_version].iloc[0] compare_data = df[df["version"] == compare_version].iloc[0] # Display comparison col1, col2 = st.columns(2) with col1: st.markdown(f"### {base_version}") st.markdown(f"**Commit:** {base_data['commit_id']}") st.markdown(f"**Date:** {base_data['timestamp']}") st.markdown(f"**Author:** {base_data['author']}") st.markdown(f"**Message:** {base_data['message']}") # Performance metrics st.markdown("#### Performance Metrics") for metric, value in base_data["performance"].items(): st.markdown(f"**{metric.capitalize()}:** {value:.4f}") with col2: st.markdown(f"### {compare_version}") st.markdown(f"**Commit:** {compare_data['commit_id']}") st.markdown(f"**Date:** {compare_data['timestamp']}") st.markdown(f"**Author:** {compare_data['author']}") st.markdown(f"**Message:** {compare_data['message']}") # Performance metrics st.markdown("#### Performance Metrics") for metric, value in compare_data["performance"].items(): # Calculate change base_value = base_data["performance"].get(metric, 0) change = value - base_value change_pct = (change / base_value * 100) if base_value != 0 else float('inf') # Display with change indicator if change > 0: st.markdown(f"**{metric.capitalize()}:** {value:.4f} 📈 **(+{change:.4f}, {change_pct:.2f}%)**") elif change < 0: st.markdown(f"**{metric.capitalize()}:** {value:.4f} 📉 **({change:.4f}, {change_pct:.2f}%)**") else: st.markdown(f"**{metric.capitalize()}:** {value:.4f} (no change)") # Show visual diff of model config st.subheader("Configuration Changes") # Sample configs (in a real app, you'd fetch these from the API) base_config = { "hidden_size": 768, "num_attention_heads": 12, "num_hidden_layers": 6, "vocab_size": 30000 } compare_config = { "hidden_size": 1024, "num_attention_heads": 16, "num_hidden_layers": 8, "vocab_size": 30000 } # Generate a formatted diff base_str = json.dumps(base_config, indent=2).splitlines() compare_str = json.dumps(compare_config, indent=2).splitlines() diff = difflib.unified_diff( base_str, compare_str, fromfile=f'config_{base_version}', tofile=f'config_{compare_version}', lineterm='' ) diff_html = [] for line in diff: if line.startswith('+'): diff_html.append(f'{line}') elif line.startswith('-'): diff_html.append(f'{line}') elif line.startswith('@@'): diff_html.append(f'{line}') else: diff_html.append(line) st.markdown('
' + '
'.join(diff_html) + '
', unsafe_allow_html=True) # Rollback functionality st.subheader("Rollback to Previous Version") rollback_version = st.selectbox( "Select version to rollback to", options=df["version"].tolist(), index=len(df)-2 # Default to second-to-last version ) if st.button("Rollback", use_container_width=True, type="primary"): with st.spinner("Rolling back to version " + rollback_version): # In a real implementation, this would call the HF API to perform the rollback st.success(f"Successfully rolled back to {rollback_version}") # Here you would update the model information and refresh the view