import streamlit as st import pandas as pd from datetime import datetime def render_home(): """Render the home page with model overview and statistics""" st.title("🤗 Hugging Face Model Manager") st.markdown( """ Welcome to your personal Hugging Face model management dashboard. From here, you can view, create, and manage your machine learning models. """ ) # Check if we have models loaded if not st.session_state.get("models"): with st.spinner("Loading your models..."): try: st.session_state.models = st.session_state.client.get_user_models() except Exception as e: st.error(f"Error loading models: {str(e)}") # Model Statistics Dashboard st.markdown("### 📊 Model Statistics") # Key statistics in cards col1, col2, col3 = st.columns([1, 1, 1]) with col1: # Total models count total_models = len(st.session_state.models) st.markdown( f"""
{total_models}
Total Models
Total number of models you've created
""", unsafe_allow_html=True, ) with col2: # Total downloads (sum from all models) total_downloads = sum( getattr(model, "downloads", 0) for model in st.session_state.models ) st.markdown( f"""
{total_downloads:,}
Total Downloads
Cumulative downloads across all your models
""", unsafe_allow_html=True, ) with col3: # Calculate total likes total_likes = sum( getattr(model, "likes", 0) for model in st.session_state.models ) st.markdown( f"""
{total_likes}
Total Likes
Cumulative likes across all your models
""", unsafe_allow_html=True, ) # Quick Actions with improved styling st.markdown("### 🚀 Quick Actions") quick_actions_col1, quick_actions_col2 = st.columns([1, 1]) with quick_actions_col1: if st.button( "➕ Create New Repository", key="create_repo_home", use_container_width=True ): st.session_state.page = "repository_management" st.experimental_rerun() with quick_actions_col2: if st.button( "🔄 Refresh Models", key="refresh_models_home", use_container_width=True ): with st.spinner("Refreshing models..."): try: st.session_state.models = st.session_state.client.get_user_models() st.success("Models refreshed!") except Exception as e: st.error(f"Error refreshing models: {str(e)}") # Your Models section st.markdown("### 📚 Your Models") if not st.session_state.models: st.info( "You don't have any models yet. Click 'Create New Repository' to get started!" ) else: # Create dataframe from models list for display models_data = [] for model in st.session_state.models: try: # Extract key data last_modified = ( datetime.fromisoformat(model.lastModified.replace("Z", "+00:00")) if hasattr(model, "lastModified") else None ) model_data = { "Model Name": model.modelId.split("/")[-1], "Full ID": model.modelId, "Downloads": getattr(model, "downloads", 0), "Likes": getattr(model, "likes", 0), "Last Modified": last_modified, "Private": getattr(model, "private", False), } models_data.append(model_data) except Exception as e: st.warning(f"Error processing model {getattr(model, 'modelId', 'unknown')}: {str(e)}") # Sorting sort_options = ["Last Modified", "Downloads", "Likes", "Model Name"] sort_by = st.selectbox("Sort by", sort_options, index=0) # Create DataFrame and sort if models_data: df = pd.DataFrame(models_data) if sort_by == "Last Modified": df = df.sort_values(by=sort_by, ascending=False) elif sort_by in ["Downloads", "Likes"]: df = df.sort_values(by=sort_by, ascending=False) else: df = df.sort_values(by=sort_by) # Format the Last Modified date df["Last Modified"] = df["Last Modified"].apply( lambda x: x.strftime("%b %d, %Y") if pd.notnull(x) else "N/A" ) # Display models as cards for i, row in df.iterrows(): with st.container(): col1, col2 = st.columns([3, 1]) with col1: st.markdown( f"""

{row['Model Name']}

{row['Full ID']}

{row['Downloads']:,}
downloads
{row['Likes']}
likes
{row['Last Modified']}
updated
""", unsafe_allow_html=True, ) with col2: if st.button( "📝 Manage", key=f"manage_{row['Full ID']}", use_container_width=True ): st.session_state.selected_model = row["Full ID"] st.session_state.page = "model_details" st.experimental_rerun()