File size: 7,761 Bytes
74dd3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

import streamlit as st
import pandas as pd
from datetime import datetime
import difflib
import json

def fetch_model_versions(repo_id):
    """
    Fetch model versions from the Hugging Face API.
    In a real implementation, this would call the HF API to get version history.
    For now, we'll use demo data.
    """
    # In a production app, you would fetch this from the Hugging Face API
    # For demo purposes, create some sample version data
    versions = [
        {
            "version": "v1.0",
            "commit_id": "abc123",
            "timestamp": "2023-01-15T10:30:00Z",
            "author": st.session_state.username,
            "message": "Initial model release",
            "files_changed": 5,
            "performance": {"accuracy": 0.85, "f1": 0.82}
        },
        {
            "version": "v1.1",
            "commit_id": "def456",
            "timestamp": "2023-02-20T14:45:00Z",
            "author": st.session_state.username,
            "message": "Improved tokenization",
            "files_changed": 2,
            "performance": {"accuracy": 0.87, "f1": 0.84}
        },
        {
            "version": "v2.0",
            "commit_id": "ghi789",
            "timestamp": "2023-03-10T09:15:00Z",
            "author": st.session_state.username,
            "message": "Major model architecture upgrade",
            "files_changed": 12,
            "performance": {"accuracy": 0.92, "f1": 0.90}
        }
    ]
    return versions

def render_version_history(model_info):
    """Render the version history of a model"""
    if not model_info:
        st.error("Model information not found")
        return
    
    repo_id = model_info.modelId
    st.subheader("πŸ”„ Version History")
    
    with st.spinner("Loading version history..."):
        versions = fetch_model_versions(repo_id)
    
    if not versions:
        st.info("No version history found for this model.")
        return
    
    # Convert to DataFrame for easier display
    df = pd.DataFrame(versions)
    
    # Format timestamp
    df["timestamp"] = pd.to_datetime(df["timestamp"]).dt.strftime("%Y-%m-%d %H:%M")
    
    # Create a cleaner display version
    display_df = df[["version", "timestamp", "author", "message", "files_changed"]]
    display_df.columns = ["Version", "Date", "Author", "Commit Message", "Files Changed"]
    
    # Show the version history
    st.dataframe(display_df, use_container_width=True)
    
    # Version comparison
    st.subheader("Compare Versions")
    col1, col2 = st.columns(2)
    
    with col1:
        base_version = st.selectbox(
            "Base Version",
            options=df["version"].tolist(),
            index=0
        )
    
    with col2:
        compare_version = st.selectbox(
            "Compare Version",
            options=[v for v in df["version"].tolist() if v != base_version],
            index=0
        )
    
    if st.button("Compare", use_container_width=True):
        with st.spinner("Generating comparison..."):
            # In a real implementation, fetch the actual data from each version
            # For demo, use the sample performance metrics
            base_data = df[df["version"] == base_version].iloc[0]
            compare_data = df[df["version"] == compare_version].iloc[0]
            
            # Display comparison
            col1, col2 = st.columns(2)
            
            with col1:
                st.markdown(f"### {base_version}")
                st.markdown(f"**Commit:** {base_data['commit_id']}")
                st.markdown(f"**Date:** {base_data['timestamp']}")
                st.markdown(f"**Author:** {base_data['author']}")
                st.markdown(f"**Message:** {base_data['message']}")
                
                # Performance metrics
                st.markdown("#### Performance Metrics")
                for metric, value in base_data["performance"].items():
                    st.markdown(f"**{metric.capitalize()}:** {value:.4f}")
            
            with col2:
                st.markdown(f"### {compare_version}")
                st.markdown(f"**Commit:** {compare_data['commit_id']}")
                st.markdown(f"**Date:** {compare_data['timestamp']}")
                st.markdown(f"**Author:** {compare_data['author']}")
                st.markdown(f"**Message:** {compare_data['message']}")
                
                # Performance metrics
                st.markdown("#### Performance Metrics")
                for metric, value in compare_data["performance"].items():
                    # Calculate change
                    base_value = base_data["performance"].get(metric, 0)
                    change = value - base_value
                    change_pct = (change / base_value * 100) if base_value != 0 else float('inf')
                    
                    # Display with change indicator
                    if change > 0:
                        st.markdown(f"**{metric.capitalize()}:** {value:.4f} πŸ“ˆ **(+{change:.4f}, {change_pct:.2f}%)**")
                    elif change < 0:
                        st.markdown(f"**{metric.capitalize()}:** {value:.4f} πŸ“‰ **({change:.4f}, {change_pct:.2f}%)**")
                    else:
                        st.markdown(f"**{metric.capitalize()}:** {value:.4f} (no change)")
            
            # Show visual diff of model config
            st.subheader("Configuration Changes")
            
            # Sample configs (in a real app, you'd fetch these from the API)
            base_config = {
                "hidden_size": 768,
                "num_attention_heads": 12,
                "num_hidden_layers": 6,
                "vocab_size": 30000
            }
            
            compare_config = {
                "hidden_size": 1024,
                "num_attention_heads": 16,
                "num_hidden_layers": 8,
                "vocab_size": 30000
            }
            
            # Generate a formatted diff
            base_str = json.dumps(base_config, indent=2).splitlines()
            compare_str = json.dumps(compare_config, indent=2).splitlines()
            
            diff = difflib.unified_diff(
                base_str,
                compare_str,
                fromfile=f'config_{base_version}',
                tofile=f'config_{compare_version}',
                lineterm=''
            )
            
            diff_html = []
            for line in diff:
                if line.startswith('+'):
                    diff_html.append(f'<span style="color: green">{line}</span>')
                elif line.startswith('-'):
                    diff_html.append(f'<span style="color: red">{line}</span>')
                elif line.startswith('@@'):
                    diff_html.append(f'<span style="color: purple">{line}</span>')
                else:
                    diff_html.append(line)
            
            st.markdown('<div style="background-color: #f5f5f5; padding: 10px; border-radius: 5px; font-family: monospace; white-space: pre-wrap;">' + '<br>'.join(diff_html) + '</div>', unsafe_allow_html=True)
    
    # Rollback functionality
    st.subheader("Rollback to Previous Version")
    rollback_version = st.selectbox(
        "Select version to rollback to",
        options=df["version"].tolist(),
        index=len(df)-2  # Default to second-to-last version
    )
    
    if st.button("Rollback", use_container_width=True, type="primary"):
        with st.spinner("Rolling back to version " + rollback_version):
            # In a real implementation, this would call the HF API to perform the rollback
            st.success(f"Successfully rolled back to {rollback_version}")
            # Here you would update the model information and refresh the view