File size: 14,314 Bytes
74dd3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

import streamlit as st
import re
import json
import time

def model_documentation_generator(model_info):
    """Generate comprehensive model documentation based on metadata"""
    if not model_info:
        st.error("Model information not found")
        return
    
    st.subheader("πŸ”„ Automated Model Documentation Generator")
    st.markdown("This tool generates a comprehensive model card based on model metadata and your input.")
    
    # Extract existing model card content if available
    model_card_content = ""
    yaml_content = ""
    markdown_content = ""
    try:
        repo_id = model_info.modelId
        model_card_url = f"https://huggingface.co/{repo_id}/raw/main/README.md"
        response = st.session_state.client.api._get_paginated(model_card_url)
        if response.status_code == 200:
            model_card_content = response.text
            
            # Extract YAML frontmatter
            yaml_match = re.search(r"---\s+(.*?)\s+---", model_card_content, re.DOTALL)
            if yaml_match:
                yaml_content = yaml_match.group(1)
                
                # Extract markdown content (everything after frontmatter)
                markdown_match = re.search(r"---\s+.*?\s+---\s*(.*)", model_card_content, re.DOTALL)
                if markdown_match:
                    markdown_content = markdown_match.group(1).strip()
    except Exception as e:
        st.warning(f"Couldn't load model card: {str(e)}")
    
    # Form for model metadata input
    with st.form("model_doc_form"):
        st.markdown("### Model Metadata")
        
        # Basic Information
        st.markdown("#### Basic Information")
        col1, col2 = st.columns(2)
        
        with col1:
            # Extract model name from repo ID
            model_name = model_info.modelId.split("/")[-1]
            model_title = st.text_input("Model Title", value=model_name.replace("-", " ").title())
        
        with col2:
            # Model type selection
            model_type_options = [
                "Text Classification", 
                "Token Classification", 
                "Question Answering", 
                "Summarization", 
                "Translation", 
                "Text Generation", 
                "Image Classification", 
                "Object Detection", 
                "Other"
            ]
            
            # Try to determine model type from tags
            default_type_index = 0
            tags = getattr(model_info, "tags", [])
            for i, option in enumerate(model_type_options):
                option_key = option.lower().replace(" ", "-")
                if option_key in tags or option_key.replace("-", "_") in tags:
                    default_type_index = i
                    break
            
            model_type = st.selectbox(
                "Model Type", 
                model_type_options,
                index=default_type_index
            )
        
        # Model description
        description = st.text_area(
            "Model Description", 
            value=getattr(model_info, "description", "") or "",
            height=100,
            help="A brief overview of what the model does"
        )
        
        # Technical Information
        st.markdown("#### Technical Information")
        col1, col2 = st.columns(2)
        
        with col1:
            # Model Architecture
            architecture_options = [
                "BERT", "GPT-2", "T5", "RoBERTa", "DeBERTa", "DistilBERT", 
                "BART", "ResNet", "YOLO", "Other"
            ]
            architecture = st.selectbox("Model Architecture", architecture_options)
            
            # Framework
            framework_options = ["PyTorch", "TensorFlow", "JAX", "Other"]
            framework = st.selectbox("Framework", framework_options)
        
        with col2:
            # Model size
            model_size = st.text_input("Model Size (e.g., 110M parameters)")
            
            # Language
            language_options = ["English", "French", "German", "Spanish", "Chinese", "Japanese", "Multilingual", "Other"]
            language = st.selectbox("Language", language_options)
        
        # Training Information
        st.markdown("#### Training Information")
        col1, col2 = st.columns(2)
        
        with col1:
            # Training Dataset
            training_data = st.text_input("Training Dataset(s)")
            
            # Training compute
            training_compute = st.text_input("Training Infrastructure (e.g., TPU v3-8, 4x A100)")
        
        with col2:
            # Evaluation Dataset
            eval_data = st.text_input("Evaluation Dataset(s)")
            
            # Training time
            training_time = st.text_input("Training Time (e.g., 3 days, 12 hours)")
        
        # Performance Metrics
        st.markdown("#### Performance Metrics")
        
        metrics_data = st.text_area(
            "Performance Metrics (one per line, e.g., 'Accuracy: 0.92')",
            height=100,
            help="Key metrics and their values"
        )
        
        # Limitations
        st.markdown("#### Limitations and Biases")
        
        limitations = st.text_area(
            "Known Limitations and Biases",
            height=100,
            help="Document any known limitations, biases, or ethical considerations"
        )
        
        # Usage Information
        st.markdown("#### Usage Information")
        
        use_cases = st.text_area(
            "Intended Use Cases",
            height=100,
            help="Describe how the model should be used"
        )
        
        code_example = st.text_area(
            "Code Example",
            height=150,
            value=f"""
```python
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("{model_info.modelId}")
model = AutoModel.from_pretrained("{model_info.modelId}")

inputs = tokenizer("Hello, world!", return_tensors="pt")
outputs = model(**inputs)
```
            """,
            help="Provide a simple code example showing how to use the model"
        )
        
        # License and Citation
        st.markdown("#### License and Citation")
        
        license_options = ["MIT", "Apache-2.0", "GPL-3.0", "CC-BY-SA-4.0", "CC-BY-4.0", "Proprietary", "Other"]
        license_type = st.selectbox("License", license_options)
        
        citation = st.text_area(
            "Citation Information",
            height=100,
            help="Provide citation information if applicable"
        )
        
        # Tags
        st.markdown("#### Tags")
        
        # Get available tags
        available_tags = st.session_state.client.get_model_tags()
        
        # Extract existing tags
        existing_tags = []
        if yaml_content:
            tags_match = re.search(r"tags:\s*((?:- .*?\n)+)", yaml_content, re.DOTALL)
            if tags_match:
                existing_tags = [
                    line.strip("- \n")
                    for line in tags_match.group(1).split("\n")
                    if line.strip().startswith("-")
                ]
        
        selected_tags = st.multiselect(
            "Select tags for your model",
            options=available_tags,
            default=existing_tags,
            help="Tags help others discover your model"
        )
        
        # Advanced options
        with st.expander("Advanced Options"):
            keep_existing_content = st.checkbox(
                "Keep existing custom content",
                value=True,
                help="If checked, we'll try to preserve custom sections from your existing model card"
            )
            
            additional_sections = st.text_area(
                "Additional Custom Sections (in Markdown)",
                height=200,
                help="Add any additional custom sections in Markdown format"
            )
        
        # Submit button
        submitted = st.form_submit_button("Generate Model Card", use_container_width=True)
        
        if submitted:
            with st.spinner("Generating comprehensive model card..."):
                try:
                    # Parse performance metrics
                    metrics_list = []
                    for line in metrics_data.split("\n"):
                        line = line.strip()
                        if line:
                            metrics_list.append(line)
                    
                    # Generate YAML frontmatter
                    yaml_frontmatter = f"""tags:
{chr(10).join(['- ' + tag for tag in selected_tags])}
license: {license_type}"""
                    
                    if language and language != "Other":
                        yaml_frontmatter += f"\nlanguage: {language.lower()}"
                    
                    if model_type and model_type != "Other":
                        yaml_frontmatter += f"\npipeline_tag: {model_type.lower().replace(' ', '-')}"
                    
                    # Generate markdown content
                    md_content = f"""# {model_title}

{description}

## Model Description

This model is a {architecture}-based model for {model_type} tasks. It was developed using {framework} and consists of {model_size if model_size else "multiple"} parameters.

"""
                    
                    # Training section
                    if training_data or eval_data or training_compute or training_time:
                        md_content += "## Training and Evaluation Data\n\n"
                        
                        if training_data:
                            md_content += f"The model was trained on {training_data}. "
                        
                        if training_compute:
                            md_content += f"Training was performed using {training_compute}. "
                        
                        if training_time:
                            md_content += f"The total training time was approximately {training_time}."
                        
                        md_content += "\n\n"
                        
                        if eval_data:
                            md_content += f"Evaluation was performed on {eval_data}.\n\n"
                    
                    # Performance metrics
                    if metrics_list:
                        md_content += "## Model Performance\n\n"
                        md_content += "The model achieves the following performance metrics:\n\n"
                        for metric in metrics_list:
                            md_content += f"- {metric}\n"
                        md_content += "\n"
                    
                    # Limitations
                    if limitations:
                        md_content += "## Limitations and Biases\n\n"
                        md_content += f"{limitations}\n\n"
                    
                    # Usage
                    if use_cases:
                        md_content += "## Intended Uses & Limitations\n\n"
                        md_content += f"{use_cases}\n\n"
                    
                    # Code example
                    if code_example:
                        md_content += "## How to Use\n\n"
                        md_content += "Here's an example of how to use this model:\n\n"
                        md_content += f"{code_example}\n\n"
                    
                    # Citation
                    if citation:
                        md_content += "## Citation\n\n"
                        md_content += f"{citation}\n\n"
                    
                    # Keep existing custom content if requested
                    if keep_existing_content and markdown_content:
                        # Try to extract sections we haven't covered
                        existing_sections = re.findall(r"^## (.+?)\n\n(.*?)(?=^## |\Z)", markdown_content, re.MULTILINE | re.DOTALL)
                        standard_sections = ["Model Description", "Training and Evaluation Data", "Model Performance", 
                                            "Limitations and Biases", "Intended Uses & Limitations", "How to Use", "Citation"]
                        
                        for section_title, section_content in existing_sections:
                            if section_title.strip() not in standard_sections:
                                md_content += f"## {section_title}\n\n{section_content}\n\n"
                    
                    # Add additional custom sections
                    if additional_sections:
                        md_content += f"\n{additional_sections}\n"
                    
                    # Combine everything into the final model card
                    final_model_card = f"---\n{yaml_frontmatter}\n---\n\n{md_content.strip()}"
                    
                    # Display the generated model card
                    st.markdown("### Generated Model Card")
                    st.code(final_model_card, language="markdown")
                    
                    # Option to update the model card
                    if st.button("Update Model Card", use_container_width=True, type="primary"):
                        with st.spinner("Updating model card..."):
                            try:
                                # Update the model card
                                success, _ = st.session_state.client.update_model_card(
                                    model_info.modelId, final_model_card
                                )
                                
                                if success:
                                    st.success("Model card updated successfully!")
                                    time.sleep(1)  # Give API time to update
                                    st.rerun()
                                else:
                                    st.error("Failed to update model card")
                            except Exception as e:
                                st.error(f"Error updating model card: {str(e)}")
                    
                except Exception as e:
                    st.error(f"Error generating model card: {str(e)}")