Spaces:
Sleeping
Sleeping
File size: 14,314 Bytes
74dd3f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import streamlit as st
import re
import json
import time
def model_documentation_generator(model_info):
"""Generate comprehensive model documentation based on metadata"""
if not model_info:
st.error("Model information not found")
return
st.subheader("π Automated Model Documentation Generator")
st.markdown("This tool generates a comprehensive model card based on model metadata and your input.")
# Extract existing model card content if available
model_card_content = ""
yaml_content = ""
markdown_content = ""
try:
repo_id = model_info.modelId
model_card_url = f"https://huggingface.co/{repo_id}/raw/main/README.md"
response = st.session_state.client.api._get_paginated(model_card_url)
if response.status_code == 200:
model_card_content = response.text
# Extract YAML frontmatter
yaml_match = re.search(r"---\s+(.*?)\s+---", model_card_content, re.DOTALL)
if yaml_match:
yaml_content = yaml_match.group(1)
# Extract markdown content (everything after frontmatter)
markdown_match = re.search(r"---\s+.*?\s+---\s*(.*)", model_card_content, re.DOTALL)
if markdown_match:
markdown_content = markdown_match.group(1).strip()
except Exception as e:
st.warning(f"Couldn't load model card: {str(e)}")
# Form for model metadata input
with st.form("model_doc_form"):
st.markdown("### Model Metadata")
# Basic Information
st.markdown("#### Basic Information")
col1, col2 = st.columns(2)
with col1:
# Extract model name from repo ID
model_name = model_info.modelId.split("/")[-1]
model_title = st.text_input("Model Title", value=model_name.replace("-", " ").title())
with col2:
# Model type selection
model_type_options = [
"Text Classification",
"Token Classification",
"Question Answering",
"Summarization",
"Translation",
"Text Generation",
"Image Classification",
"Object Detection",
"Other"
]
# Try to determine model type from tags
default_type_index = 0
tags = getattr(model_info, "tags", [])
for i, option in enumerate(model_type_options):
option_key = option.lower().replace(" ", "-")
if option_key in tags or option_key.replace("-", "_") in tags:
default_type_index = i
break
model_type = st.selectbox(
"Model Type",
model_type_options,
index=default_type_index
)
# Model description
description = st.text_area(
"Model Description",
value=getattr(model_info, "description", "") or "",
height=100,
help="A brief overview of what the model does"
)
# Technical Information
st.markdown("#### Technical Information")
col1, col2 = st.columns(2)
with col1:
# Model Architecture
architecture_options = [
"BERT", "GPT-2", "T5", "RoBERTa", "DeBERTa", "DistilBERT",
"BART", "ResNet", "YOLO", "Other"
]
architecture = st.selectbox("Model Architecture", architecture_options)
# Framework
framework_options = ["PyTorch", "TensorFlow", "JAX", "Other"]
framework = st.selectbox("Framework", framework_options)
with col2:
# Model size
model_size = st.text_input("Model Size (e.g., 110M parameters)")
# Language
language_options = ["English", "French", "German", "Spanish", "Chinese", "Japanese", "Multilingual", "Other"]
language = st.selectbox("Language", language_options)
# Training Information
st.markdown("#### Training Information")
col1, col2 = st.columns(2)
with col1:
# Training Dataset
training_data = st.text_input("Training Dataset(s)")
# Training compute
training_compute = st.text_input("Training Infrastructure (e.g., TPU v3-8, 4x A100)")
with col2:
# Evaluation Dataset
eval_data = st.text_input("Evaluation Dataset(s)")
# Training time
training_time = st.text_input("Training Time (e.g., 3 days, 12 hours)")
# Performance Metrics
st.markdown("#### Performance Metrics")
metrics_data = st.text_area(
"Performance Metrics (one per line, e.g., 'Accuracy: 0.92')",
height=100,
help="Key metrics and their values"
)
# Limitations
st.markdown("#### Limitations and Biases")
limitations = st.text_area(
"Known Limitations and Biases",
height=100,
help="Document any known limitations, biases, or ethical considerations"
)
# Usage Information
st.markdown("#### Usage Information")
use_cases = st.text_area(
"Intended Use Cases",
height=100,
help="Describe how the model should be used"
)
code_example = st.text_area(
"Code Example",
height=150,
value=f"""
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("{model_info.modelId}")
model = AutoModel.from_pretrained("{model_info.modelId}")
inputs = tokenizer("Hello, world!", return_tensors="pt")
outputs = model(**inputs)
```
""",
help="Provide a simple code example showing how to use the model"
)
# License and Citation
st.markdown("#### License and Citation")
license_options = ["MIT", "Apache-2.0", "GPL-3.0", "CC-BY-SA-4.0", "CC-BY-4.0", "Proprietary", "Other"]
license_type = st.selectbox("License", license_options)
citation = st.text_area(
"Citation Information",
height=100,
help="Provide citation information if applicable"
)
# Tags
st.markdown("#### Tags")
# Get available tags
available_tags = st.session_state.client.get_model_tags()
# Extract existing tags
existing_tags = []
if yaml_content:
tags_match = re.search(r"tags:\s*((?:- .*?\n)+)", yaml_content, re.DOTALL)
if tags_match:
existing_tags = [
line.strip("- \n")
for line in tags_match.group(1).split("\n")
if line.strip().startswith("-")
]
selected_tags = st.multiselect(
"Select tags for your model",
options=available_tags,
default=existing_tags,
help="Tags help others discover your model"
)
# Advanced options
with st.expander("Advanced Options"):
keep_existing_content = st.checkbox(
"Keep existing custom content",
value=True,
help="If checked, we'll try to preserve custom sections from your existing model card"
)
additional_sections = st.text_area(
"Additional Custom Sections (in Markdown)",
height=200,
help="Add any additional custom sections in Markdown format"
)
# Submit button
submitted = st.form_submit_button("Generate Model Card", use_container_width=True)
if submitted:
with st.spinner("Generating comprehensive model card..."):
try:
# Parse performance metrics
metrics_list = []
for line in metrics_data.split("\n"):
line = line.strip()
if line:
metrics_list.append(line)
# Generate YAML frontmatter
yaml_frontmatter = f"""tags:
{chr(10).join(['- ' + tag for tag in selected_tags])}
license: {license_type}"""
if language and language != "Other":
yaml_frontmatter += f"\nlanguage: {language.lower()}"
if model_type and model_type != "Other":
yaml_frontmatter += f"\npipeline_tag: {model_type.lower().replace(' ', '-')}"
# Generate markdown content
md_content = f"""# {model_title}
{description}
## Model Description
This model is a {architecture}-based model for {model_type} tasks. It was developed using {framework} and consists of {model_size if model_size else "multiple"} parameters.
"""
# Training section
if training_data or eval_data or training_compute or training_time:
md_content += "## Training and Evaluation Data\n\n"
if training_data:
md_content += f"The model was trained on {training_data}. "
if training_compute:
md_content += f"Training was performed using {training_compute}. "
if training_time:
md_content += f"The total training time was approximately {training_time}."
md_content += "\n\n"
if eval_data:
md_content += f"Evaluation was performed on {eval_data}.\n\n"
# Performance metrics
if metrics_list:
md_content += "## Model Performance\n\n"
md_content += "The model achieves the following performance metrics:\n\n"
for metric in metrics_list:
md_content += f"- {metric}\n"
md_content += "\n"
# Limitations
if limitations:
md_content += "## Limitations and Biases\n\n"
md_content += f"{limitations}\n\n"
# Usage
if use_cases:
md_content += "## Intended Uses & Limitations\n\n"
md_content += f"{use_cases}\n\n"
# Code example
if code_example:
md_content += "## How to Use\n\n"
md_content += "Here's an example of how to use this model:\n\n"
md_content += f"{code_example}\n\n"
# Citation
if citation:
md_content += "## Citation\n\n"
md_content += f"{citation}\n\n"
# Keep existing custom content if requested
if keep_existing_content and markdown_content:
# Try to extract sections we haven't covered
existing_sections = re.findall(r"^## (.+?)\n\n(.*?)(?=^## |\Z)", markdown_content, re.MULTILINE | re.DOTALL)
standard_sections = ["Model Description", "Training and Evaluation Data", "Model Performance",
"Limitations and Biases", "Intended Uses & Limitations", "How to Use", "Citation"]
for section_title, section_content in existing_sections:
if section_title.strip() not in standard_sections:
md_content += f"## {section_title}\n\n{section_content}\n\n"
# Add additional custom sections
if additional_sections:
md_content += f"\n{additional_sections}\n"
# Combine everything into the final model card
final_model_card = f"---\n{yaml_frontmatter}\n---\n\n{md_content.strip()}"
# Display the generated model card
st.markdown("### Generated Model Card")
st.code(final_model_card, language="markdown")
# Option to update the model card
if st.button("Update Model Card", use_container_width=True, type="primary"):
with st.spinner("Updating model card..."):
try:
# Update the model card
success, _ = st.session_state.client.update_model_card(
model_info.modelId, final_model_card
)
if success:
st.success("Model card updated successfully!")
time.sleep(1) # Give API time to update
st.rerun()
else:
st.error("Failed to update model card")
except Exception as e:
st.error(f"Error updating model card: {str(e)}")
except Exception as e:
st.error(f"Error generating model card: {str(e)}")
|