File size: 17,727 Bytes
74dd3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

import streamlit as st
import json
import pandas as pd
import numpy as np
import plotly.express as px
from io import StringIO
import time

def model_inference_dashboard(model_info):
    """Create a dashboard for testing model inference directly in the app"""
    if not model_info:
        st.error("Model information not found")
        return
    
    st.subheader("🧠 Model Inference Dashboard")
    
    # Get the pipeline type based on model tags or information
    pipeline_tag = getattr(model_info, "pipeline_tag", None)
    if not pipeline_tag:
        # Try to determine from tags
        tags = getattr(model_info, "tags", [])
        for tag in tags:
            if tag in [
                "text-classification", "token-classification", "question-answering",
                "summarization", "translation", "text-generation", "fill-mask",
                "sentence-similarity", "image-classification", "object-detection",
                "image-segmentation", "text-to-image", "image-to-text"
            ]:
                pipeline_tag = tag
                break
        
        if not pipeline_tag:
            pipeline_tag = "text-classification"  # Default fallback
    
    # Display information about the model
    st.info(f"This dashboard allows you to test your model's inference capabilities. Model pipeline: **{pipeline_tag}**")
    
    # Different input options based on pipeline type
    input_data = None
    
    if pipeline_tag in ["text-classification", "token-classification", "fill-mask", "text-generation", "summarization"]:
        # Text-based input
        st.markdown("### Text Input")
        input_text = st.text_area(
            "Enter text for inference",
            value="This model is amazing!",
            height=150
        )
        
        # Additional parameters for specific pipelines
        if pipeline_tag == "text-generation":
            col1, col2 = st.columns(2)
            with col1:
                max_length = st.slider("Max Length", min_value=10, max_value=500, value=100)
            with col2:
                temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=1.0, step=0.1)
            
            input_data = {
                "text": input_text,
                "max_length": max_length,
                "temperature": temperature
            }
        elif pipeline_tag == "summarization":
            max_length = st.slider("Max Summary Length", min_value=10, max_value=200, value=50)
            input_data = {
                "text": input_text,
                "max_length": max_length
            }
        else:
            input_data = {"text": input_text}
    
    elif pipeline_tag in ["question-answering"]:
        st.markdown("### Question & Context")
        question = st.text_input("Question", value="What is this model about?")
        context = st.text_area(
            "Context", 
            value="This model is a transformer-based language model designed for natural language understanding tasks.",
            height=150
        )
        input_data = {
            "question": question,
            "context": context
        }
    
    elif pipeline_tag in ["translation"]:
        st.markdown("### Translation")
        source_lang = st.selectbox("Source Language", ["English", "French", "German", "Spanish", "Chinese"])
        target_lang = st.selectbox("Target Language", ["French", "English", "German", "Spanish", "Chinese"])
        translation_text = st.text_area("Text to translate", value="Hello, how are you?", height=150)
        input_data = {
            "text": translation_text,
            "source_language": source_lang,
            "target_language": target_lang
        }
    
    elif pipeline_tag in ["image-classification", "object-detection", "image-segmentation"]:
        st.markdown("### Image Input")
        upload_method = st.radio("Select input method", ["Upload Image", "Image URL"])
        
        if upload_method == "Upload Image":
            uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
            if uploaded_file is not None:
                st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
                input_data = {"image": uploaded_file}
        else:
            image_url = st.text_input("Image URL", value="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/distilbert-base-uncased-finetuned-sst-2-english-architecture.png")
            if image_url:
                st.image(image_url, caption="Image from URL", use_column_width=True)
                input_data = {"image_url": image_url}
    
    elif pipeline_tag in ["audio-classification", "automatic-speech-recognition"]:
        st.markdown("### Audio Input")
        upload_method = st.radio("Select input method", ["Upload Audio", "Audio URL"])
        
        if upload_method == "Upload Audio":
            uploaded_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "ogg"])
            if uploaded_file is not None:
                st.audio(uploaded_file)
                input_data = {"audio": uploaded_file}
        else:
            audio_url = st.text_input("Audio URL")
            if audio_url:
                st.audio(audio_url)
                input_data = {"audio_url": audio_url}
    
    # Execute inference
    if st.button("Run Inference", use_container_width=True):
        if input_data:
            with st.spinner("Running inference..."):
                # In a real implementation, this would call the HF Inference API
                # For demo purposes, simulate a response
                time.sleep(2)
                
                # Generate a sample response based on the pipeline type
                if pipeline_tag == "text-classification":
                    result = [
                        {"label": "POSITIVE", "score": 0.9231},
                        {"label": "NEGATIVE", "score": 0.0769}
                    ]
                elif pipeline_tag == "token-classification":
                    result = [
                        {"entity": "B-PER", "word": "This", "score": 0.2, "index": 0, "start": 0, "end": 4},
                        {"entity": "O", "word": "model", "score": 0.95, "index": 1, "start": 5, "end": 10},
                        {"entity": "O", "word": "is", "score": 0.99, "index": 2, "start": 11, "end": 13},
                        {"entity": "B-MISC", "word": "amazing", "score": 0.85, "index": 3, "start": 14, "end": 21}
                    ]
                elif pipeline_tag == "text-generation":
                    result = {
                        "generated_text": input_data["text"] + " It provides state-of-the-art performance on a wide range of natural language processing tasks, including sentiment analysis, named entity recognition, and question answering. The model was trained on a diverse corpus of text data, allowing it to generate coherent and contextually relevant responses."
                    }
                elif pipeline_tag == "summarization":
                    result = {
                        "summary_text": "This model provides excellent performance."
                    }
                elif pipeline_tag == "question-answering":
                    result = {
                        "answer": "a transformer-based language model",
                        "start": 9,
                        "end": 45,
                        "score": 0.953
                    }
                elif pipeline_tag == "translation":
                    if input_data["target_language"] == "French":
                        result = {"translation_text": "Bonjour, comment allez-vous?"}
                    elif input_data["target_language"] == "German":
                        result = {"translation_text": "Hallo, wie geht es dir?"}
                    elif input_data["target_language"] == "Spanish":
                        result = {"translation_text": "Hola, ¿cómo estás?"}
                    elif input_data["target_language"] == "Chinese":
                        result = {"translation_text": "你好,你好吗?"}
                    else:
                        result = {"translation_text": "Hello, how are you?"}
                elif pipeline_tag in ["image-classification"]:
                    result = [
                        {"label": "diagram", "score": 0.9712},
                        {"label": "architecture", "score": 0.0231},
                        {"label": "document", "score": 0.0057}
                    ]
                elif pipeline_tag in ["object-detection"]:
                    result = [
                        {"label": "box", "score": 0.9712, "box": {"xmin": 10, "ymin": 20, "xmax": 100, "ymax": 80}},
                        {"label": "text", "score": 0.8923, "box": {"xmin": 120, "ymin": 30, "xmax": 250, "ymax": 60}}
                    ]
                else:
                    result = {"result": "Sample response for " + pipeline_tag}
                
                # Display the results
                st.markdown("### Inference Results")
                
                # Different visualizations based on the response type
                if pipeline_tag == "text-classification":
                    # Create a bar chart for classification results
                    result_df = pd.DataFrame(result)
                    fig = px.bar(
                        result_df, 
                        x="label", 
                        y="score", 
                        color="score",
                        color_continuous_scale=px.colors.sequential.Viridis,
                        title="Classification Results"
                    )
                    st.plotly_chart(fig, use_container_width=True)
                    
                    # Show the raw results
                    st.json(result)
                
                elif pipeline_tag == "token-classification":
                    # Display entity highlighting
                    st.markdown("#### Named Entities")
                    
                    # Create HTML with colored spans for entities
                    html = ""
                    input_text = input_data["text"]
                    entities = {}
                    
                    for item in result:
                        if item["entity"].startswith("B-") or item["entity"].startswith("I-"):
                            entity_type = item["entity"][2:]  # Remove B- or I- prefix
                            entities[entity_type] = entities.get(entity_type, 0) + 1
                    
                    # Create a color map for entity types
                    colors = px.colors.qualitative.Plotly[:len(entities)]
                    entity_colors = dict(zip(entities.keys(), colors))
                    
                    # Create the HTML
                    for item in result:
                        word = item["word"]
                        entity = item["entity"]
                        
                        if entity == "O":
                            html += f"{word} "
                        else:
                            entity_type = entity[2:] if entity.startswith("B-") or entity.startswith("I-") else entity
                            color = entity_colors.get(entity_type, "#CCCCCC")
                            html += f'<span style="background-color: {color}; padding: 2px; border-radius: 3px;" title="{entity} ({item["score"]:.2f})">{word}</span> '
                    
                    st.markdown(f'<div style="line-height: 2.5;">{html}</div>', unsafe_allow_html=True)
                    
                    # Display legend
                    st.markdown("#### Entity Legend")
                    legend_html = "".join([
                        f'<span style="background-color: {color}; padding: 2px 8px; margin-right: 10px; border-radius: 3px;">{entity}</span>'
                        for entity, color in entity_colors.items()
                    ])
                    st.markdown(f'<div>{legend_html}</div>', unsafe_allow_html=True)
                    
                    # Show the raw results
                    st.json(result)
                
                elif pipeline_tag in ["text-generation", "summarization", "translation"]:
                    # Display the generated text
                    response_key = "generated_text" if "generated_text" in result else "summary_text" if "summary_text" in result else "translation_text"
                    st.markdown(f"#### Output Text")
                    st.markdown(f'<div style="background-color: #f0f2f6; padding: 20px; border-radius: 10px;">{result[response_key]}</div>', unsafe_allow_html=True)
                    
                    # Text stats
                    st.markdown("#### Text Statistics")
                    input_length = len(input_data["text"]) if "text" in input_data else 0
                    output_length = len(result[response_key])
                    
                    col1, col2, col3 = st.columns(3)
                    with col1:
                        st.metric("Input Length", input_length, "characters")
                    with col2:
                        st.metric("Output Length", output_length, "characters")
                    with col3:
                        compression = ((output_length - input_length) / input_length * 100) if input_length > 0 else 0
                        st.metric("Length Change", f"{compression:.1f}%", f"{output_length - input_length} chars")
                
                elif pipeline_tag == "question-answering":
                    # Highlight the answer in the context
                    st.markdown("#### Answer")
                    st.markdown(f'<div style="background-color: #e6f3ff; padding: 10px; border-radius: 5px; font-weight: bold;">{result["answer"]}</div>', unsafe_allow_html=True)
                    
                    # Show the answer in context
                    if "context" in input_data:
                        st.markdown("#### Answer in Context")
                        context = input_data["context"]
                        start = result["start"] 
                        end = result["end"]
                        
                        highlighted_context = (
                            context[:start] + 
                            f'<span style="background-color: #ffeb3b; font-weight: bold;">{context[start:end]}</span>' + 
                            context[end:]
                        )
                        
                        st.markdown(f'<div style="background-color: #f0f2f6; padding: 15px; border-radius: 10px; line-height: 1.5;">{highlighted_context}</div>', unsafe_allow_html=True)
                    
                    # Confidence score
                    st.markdown("#### Confidence")
                    st.progress(result["score"])
                    st.text(f"Confidence Score: {result['score']:.4f}")
                
                elif pipeline_tag == "image-classification":
                    # Create a bar chart for classification results
                    result_df = pd.DataFrame(result)
                    fig = px.bar(
                        result_df, 
                        x="score", 
                        y="label", 
                        orientation='h',
                        color="score",
                        color_continuous_scale=px.colors.sequential.Viridis,
                        title="Image Classification Results"
                    )
                    fig.update_layout(yaxis={'categoryorder':'total ascending'})
                    st.plotly_chart(fig, use_container_width=True)
                    
                    # Show the raw results
                    st.json(result)
                
                else:
                    # Generic display for other types
                    st.json(result)
                
                # Option to save the results
                st.download_button(
                    label="Download Results",
                    data=json.dumps(result, indent=2),
                    file_name="inference_results.json",
                    mime="application/json"
                )
        
        else:
            st.warning("Please provide input data for inference")

    # API integration options
    with st.expander("API Integration"):
        st.markdown("### Use this model in your application")
        
        # Python code example
        st.markdown("#### Python")
        python_code = f"""
```python
import requests

API_URL = "https://api-inference.huggingface.co/models/{model_info.modelId}"
headers = {{"Authorization": "Bearer YOUR_API_KEY"}}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# Example usage
output = query({{
    "inputs": "This model is amazing!"
}})
print(output)
```
        """
        st.markdown(python_code)
        
        # JavaScript code example
        st.markdown("#### JavaScript")
        js_code = f"""
```javascript
async function query(data) {{
    const response = await fetch(
        "https://api-inference.huggingface.co/models/{model_info.modelId}",
        {{
            headers: {{ Authorization: "Bearer YOUR_API_KEY" }},
            method: "POST",
            body: JSON.stringify(data),
        }}
    );
    const result = await response.json();
    return result;
}}

// Example usage
query({{"inputs": "This model is amazing!"}}).then((response) => {{
    console.log(JSON.stringify(response));
}});
```
        """
        st.markdown(js_code)