Spaces:
Runtime error
Runtime error
Commit
·
5d4b507
1
Parent(s):
2088f46
Update gpt2.py
Browse files
gpt2.py
CHANGED
@@ -3,44 +3,42 @@ from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
3 |
import torch
|
4 |
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
st.
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
generated_output = generate_text(user_input, num_beams, temperature, max_length, top_p)
|
46 |
-
st.text_area("Generated Text", generated_output)
|
|
|
3 |
import torch
|
4 |
|
5 |
|
6 |
+
def app(): # Инкапсулирующая функция
|
7 |
+
st.title("GPT-2 Demo")
|
8 |
+
|
9 |
+
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
|
11 |
+
model_path = "zhvanetsky_model"
|
12 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
13 |
+
model = GPT2LMHeadModel.from_pretrained(model_path).to(DEVICE)
|
14 |
+
|
15 |
+
def generate_text(input_text, num_beams, temperature, max_length, top_p):
|
16 |
+
model.eval()
|
17 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(DEVICE)
|
18 |
+
with torch.no_grad():
|
19 |
+
out = model.generate(input_ids,
|
20 |
+
do_sample=True,
|
21 |
+
num_beams=num_beams,
|
22 |
+
temperature=temperature,
|
23 |
+
top_p=top_p,
|
24 |
+
top_k=500,
|
25 |
+
max_length=max_length,
|
26 |
+
no_repeat_ngram_size=3,
|
27 |
+
num_return_sequences=3,
|
28 |
+
)
|
29 |
+
return tokenizer.decode(out[0], skip_special_tokens=True)
|
30 |
+
|
31 |
+
# Streamlit interface
|
32 |
+
st.title("GPT-2 Text Generator")
|
33 |
+
|
34 |
+
user_input = st.text_area("Input Text", "Введите ваш текст")
|
35 |
+
|
36 |
+
# Add sliders or input boxes for model parameters
|
37 |
+
num_beams = st.slider("Number of Beams", min_value=1, max_value=20, value=10)
|
38 |
+
temperature = st.slider("Temperature", min_value=0.1, max_value=3.0, value=1.0, step=0.1)
|
39 |
+
max_length = st.number_input("Max Length", min_value=10, max_value=300, value=100)
|
40 |
+
top_p = st.slider("Top P", min_value=0.1, max_value=1.0, value=0.85, step=0.05)
|
41 |
+
|
42 |
+
if st.button("Generate"):
|
43 |
+
generated_output = generate_text(user_input, num_beams, temperature, max_length, top_p)
|
44 |
+
st.text_area("Generated Text", generated_output)
|
|
|
|