Spaces:
Running
on
Zero
Running
on
Zero
Updated app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,88 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
with gr.
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
with gr.Row():
|
67 |
-
|
68 |
-
prompt = gr.Text(
|
69 |
-
label="Prompt",
|
70 |
-
show_label=False,
|
71 |
-
max_lines=1,
|
72 |
-
placeholder="Enter your prompt",
|
73 |
-
container=False,
|
74 |
-
)
|
75 |
-
|
76 |
-
run_button = gr.Button("Run", scale=0)
|
77 |
-
|
78 |
-
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
-
seed = gr.Slider(
|
90 |
-
label="Seed",
|
91 |
-
minimum=0,
|
92 |
-
maximum=MAX_SEED,
|
93 |
-
step=1,
|
94 |
-
value=0,
|
95 |
-
)
|
96 |
-
|
97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
|
101 |
-
width = gr.Slider(
|
102 |
-
label="Width",
|
103 |
-
minimum=256,
|
104 |
-
maximum=MAX_IMAGE_SIZE,
|
105 |
-
step=32,
|
106 |
-
value=512,
|
107 |
-
)
|
108 |
-
|
109 |
-
height = gr.Slider(
|
110 |
-
label="Height",
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
)
|
116 |
-
|
117 |
-
with gr.
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
)
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
)
|
134 |
-
|
135 |
-
gr.
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
fn = infer,
|
142 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
-
outputs = [result]
|
144 |
)
|
145 |
|
146 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
|
|
|
|
3 |
import torch
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
from PIL import Image
|
6 |
|
7 |
+
|
8 |
+
# Text-to-Multi-View Diffusion pipeline
|
9 |
+
text_pipeline = DiffusionPipeline.from_pretrained(
|
10 |
+
"dylanebert/mvdream",
|
11 |
+
custom_pipeline="dylanebert/multi-view-diffusion",
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
trust_remote_code=True,
|
14 |
+
).to("cuda")
|
15 |
+
|
16 |
+
|
17 |
+
# Image-to-Multi-View Diffusion pipeline
|
18 |
+
image_pipeline = DiffusionPipeline.from_pretrained(
|
19 |
+
"dylanebert/multi-view-diffusion",
|
20 |
+
custom_pipeline="dylanebert/multi-view-diffusion",
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
trust_remote_code=True,
|
23 |
+
).to("cuda")
|
24 |
+
|
25 |
+
|
26 |
+
def create_image_grid(images):
|
27 |
+
images = [Image.fromarray((img * 255).astype("uint8")) for img in images]
|
28 |
+
|
29 |
+
width, height = images[0].size
|
30 |
+
grid_img = Image.new("RGB", (2 * width, 2 * height))
|
31 |
+
|
32 |
+
grid_img.paste(images[0], (0, 0))
|
33 |
+
grid_img.paste(images[1], (width, 0))
|
34 |
+
grid_img.paste(images[2], (0, height))
|
35 |
+
grid_img.paste(images[3], (width, height))
|
36 |
+
|
37 |
+
return grid_img
|
38 |
+
|
39 |
+
|
40 |
+
@spaces.GPU
|
41 |
+
def text_to_mv(prompt):
|
42 |
+
images = text_pipeline(
|
43 |
+
prompt, guidance_scale=5, num_inference_steps=30, elevation=0
|
44 |
+
)
|
45 |
+
return create_image_grid(images)
|
46 |
+
|
47 |
+
|
48 |
+
@spaces.GPU
|
49 |
+
def image_to_mv(image, prompt):
|
50 |
+
image = image.astype("float32") / 255.0
|
51 |
+
images = image_pipeline(
|
52 |
+
prompt, image, guidance_scale=5, num_inference_steps=30, elevation=0
|
53 |
+
)
|
54 |
+
return create_image_grid(images)
|
55 |
+
|
56 |
+
|
57 |
+
with gr.Blocks() as demo:
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column():
|
60 |
+
with gr.Tab("Text Input"):
|
61 |
+
text_input = gr.Textbox(
|
62 |
+
lines=2,
|
63 |
+
show_label=False,
|
64 |
+
placeholder="Enter a prompt here (e.g. 'a cat statue')",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
+
text_btn = gr.Button("Generate Multi-View Images")
|
67 |
+
with gr.Tab("Image Input"):
|
68 |
+
image_input = gr.Image(
|
69 |
+
label="Image Input",
|
70 |
+
type="numpy",
|
|
|
|
|
|
|
|
|
71 |
)
|
72 |
+
optional_text_input = gr.Textbox(
|
73 |
+
lines=2,
|
74 |
+
show_label=False,
|
75 |
+
placeholder="Enter an optional prompt here",
|
|
|
|
|
|
|
76 |
)
|
77 |
+
image_btn = gr.Button("Generate Multi-View Images")
|
78 |
+
with gr.Column():
|
79 |
+
output = gr.Image(label="Generated Images")
|
80 |
+
|
81 |
+
text_btn.click(fn=text_to_mv, inputs=text_input, outputs=output)
|
82 |
+
image_btn.click(
|
83 |
+
fn=image_to_mv, inputs=[image_input, optional_text_input], outputs=output
|
|
|
|
|
|
|
84 |
)
|
85 |
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
demo.queue().launch()
|