import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True import gradio as gr import numpy as np import random import spaces import time from diffusers import DiffusionPipeline, AutoencoderTiny from diffusers.models.attention_processor import AttnProcessor2_0 from custom_pipeline import FluxWithCFGPipeline import asyncio # Constants MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 DEFAULT_WIDTH = 1024 DEFAULT_HEIGHT = 1024 DEFAULT_INFERENCE_STEPS = 1 # Device and model setup dtype = torch.float16 pipe = FluxWithCFGPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype ) pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype) pipe.to("cuda") pipe.load_lora_weights( "hugovntr/flux-schnell-realism", weight_name="schnell-realism_v2.3.safetensors", adapter_name="better", ) pipe.set_adapters(["better"], adapter_weights=[1.0]) pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0) pipe.unload_lora_weights() # Correctly set memory format pipe.transformer.to(memory_format=torch.channels_last) pipe.vae.to(memory_format=torch.channels_last) # Conditionally enable xformers only for the transformer if hasattr(pipe, "transformer") and torch.cuda.is_available(): try: pipe.transformer.enable_xformers_memory_efficient_attention() except Exception as e: print( "Warning: Could not enable xformers for the transformer due to the following error:" ) print(e) torch.cuda.empty_cache() # Inference function @spaces.GPU(duration=25) def generate_image( prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(int(float(seed))) start_time = time.time() # Initialize static inputs for CUDA graph static_latents = torch.randn( (1, 4, height // 8, width // 8), dtype=dtype, device="cuda" ) static_prompt_embeds = torch.randn( (2, 77, 768), dtype=dtype, device="cuda" ) # Adjust dimensions as needed static_pooled_prompt_embeds = torch.randn( (2, 768), dtype=dtype, device="cuda" ) # Adjust dimensions as needed static_text_ids = torch.tensor([[[1, 2, 3]]], dtype=torch.int32, device="cuda") static_latent_image_ids = torch.tensor([1], dtype=torch.int64, device="cuda") static_timestep = torch.tensor([999], dtype=dtype, device="cuda") # Warmup s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): for _ in range(3): _ = pipe.transformer( hidden_states=static_latents, timestep=static_timestep / 1000, guidance=None, pooled_projections=static_pooled_prompt_embeds, encoder_hidden_states=static_prompt_embeds, txt_ids=static_text_ids, img_ids=static_latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False, ) torch.cuda.current_stream().wait_stream(s) # Capture CUDA Graph g = torch.cuda.CUDAGraph() with torch.cuda.graph(g): static_noise_pred = pipe.transformer( hidden_states=static_latents, timestep=static_timestep / 1000, guidance=None, pooled_projections=static_pooled_prompt_embeds, encoder_hidden_states=static_prompt_embeds, txt_ids=static_text_ids, img_ids=static_latent_image_ids, joint_attention_kwargs=pipe.joint_attention_kwargs, return_dict=False, )[0] static_latents_out = pipe.scheduler.step( static_noise_pred, static_timestep, static_latents, return_dict=False )[0] static_output = pipe._decode_latents_to_image( static_latents_out, height, width, "pil" ) # Graph-based generation function def generate_with_graph( latents, prompt_embeds, pooled_prompt_embeds, text_ids, latent_image_ids, timestep, ): static_latents.copy_(latents) static_prompt_embeds.copy_(prompt_embeds) static_pooled_prompt_embeds.copy_(pooled_prompt_embeds) static_text_ids.copy_(text_ids) static_latent_image_ids.copy_(latent_image_ids) static_timestep.copy_(timestep) g.replay() return static_output # Only generate the last image in the sequence img = pipe.generate_images( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, generate_with_graph=generate_with_graph, ) latency = f"Latency: {(time.time()-start_time):.2f} seconds" return img, seed, latency # Example prompts examples = [ "a tiny astronaut hatching from an egg on the moon", "a cute white cat holding a sign that says hello world", "an anime illustration of Steve Jobs", "Create image of Modern house in minecraft style", "photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair", "Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.", "Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.", ] # --- Gradio UI --- with gr.Blocks() as demo: with gr.Column(elem_id="app-container"): gr.Markdown("# 🎨 Realtime FLUX Image Generator") gr.Markdown( "Generate stunning images in real-time with Modified Flux.Schnell pipeline." ) gr.Markdown( "Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site." ) with gr.Row(): with gr.Column(scale=2.5): result = gr.Image( label="Generated Image", show_label=False, interactive=False ) with gr.Column(scale=1): prompt = gr.Text( label="Prompt", placeholder="Describe the image you want to generate...", lines=3, show_label=False, container=False, ) generateBtn = gr.Button("🖼️ Generate Image") enhanceBtn = gr.Button("🚀 Enhance Image") with gr.Column("Advanced Options"): with gr.Row(): realtime = gr.Checkbox( label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False, ) latency = gr.Text(label="Latency") with gr.Row(): seed = gr.Number(label="Seed", value=42) randomize_seed = gr.Checkbox( label="Randomize Seed", value=True ) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT, ) num_inference_steps = gr.Slider( label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS, ) with gr.Row(): gr.Markdown("### 🌟 Inspiration Gallery") with gr.Row(): gr.Examples( examples=examples, fn=generate_image, inputs=[prompt], outputs=[result, seed, latency], cache_examples="lazy", ) enhanceBtn.click( fn=generate_image, inputs=[prompt, seed, width, height], outputs=[result, seed, latency], show_progress="full", queue=False, concurrency_limit=None, ) generateBtn.click( fn=generate_image, inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], outputs=[result, seed, latency], show_progress="full", api_name="RealtimeFlux", queue=False, ) def update_ui(realtime_enabled): return { prompt: gr.update(interactive=True), generateBtn: gr.update(visible=not realtime_enabled), } realtime.change( fn=update_ui, inputs=[realtime], outputs=[prompt, generateBtn], queue=False, concurrency_limit=None, ) async def realtime_generation(*args): if args[0]: # If realtime is enabled loop = asyncio.get_event_loop() result = await loop.run_in_executor(None, next, generate_image(*args[1:])) return result prompt.submit( fn=generate_image, inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps], outputs=[result, seed, latency], show_progress="full", queue=False, concurrency_limit=None, ) for component in [prompt, width, height, num_inference_steps]: component.input( fn=realtime_generation, inputs=[ realtime, prompt, seed, width, height, randomize_seed, num_inference_steps, ], outputs=[result, seed, latency], show_progress="hidden", trigger_mode="always_last", queue=True, concurrency_limit=None, ) # Launch the app demo.launch()