Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
4 |
-
torch.backends.cudnn.allow_tf32 = True
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import random
|
8 |
import spaces
|
|
|
9 |
import time
|
10 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
11 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
12 |
from custom_pipeline import FluxWithCFGPipeline
|
13 |
|
|
|
|
|
14 |
# Constants
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = 2048
|
@@ -25,72 +24,110 @@ pipe = FluxWithCFGPipeline.from_pretrained(
|
|
25 |
)
|
26 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
27 |
pipe.to("cuda")
|
28 |
-
pipe.load_lora_weights(
|
29 |
-
"hugovntr/flux-schnell-realism",
|
30 |
-
weight_name="schnell-realism_v2.3.safetensors",
|
31 |
-
adapter_name="better",
|
32 |
-
)
|
33 |
pipe.set_adapters(["better"], adapter_weights=[1.0])
|
34 |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
35 |
pipe.unload_lora_weights()
|
36 |
|
37 |
-
#
|
38 |
-
pipe.
|
39 |
-
pipe.
|
40 |
-
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
torch.cuda.
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Inference function
|
54 |
@spaces.GPU(duration=25)
|
55 |
-
def generate_image(
|
56 |
-
|
57 |
-
|
58 |
-
width=DEFAULT_WIDTH,
|
59 |
-
height=DEFAULT_HEIGHT,
|
60 |
-
randomize_seed=False,
|
61 |
-
num_inference_steps=2,
|
62 |
-
progress=gr.Progress(track_tqdm=True),
|
63 |
-
):
|
64 |
if randomize_seed:
|
65 |
seed = random.randint(0, MAX_SEED)
|
66 |
generator = torch.Generator().manual_seed(int(float(seed)))
|
67 |
|
68 |
start_time = time.time()
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
latents_shape = (1, 4, height // 8, width // 8)
|
72 |
-
prompt_embeds_shape = (
|
73 |
-
1,
|
74 |
-
pipe.transformer.text_encoder.config.max_position_embeddings,
|
75 |
-
pipe.transformer.text_encoder.config.hidden_size,
|
76 |
-
)
|
77 |
-
pooled_prompt_embeds_shape = (
|
78 |
1,
|
79 |
-
pipe.transformer.
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
)
|
93 |
-
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
94 |
return img, seed, latency
|
95 |
|
96 |
# Example prompts
|
@@ -108,18 +145,12 @@ examples = [
|
|
108 |
with gr.Blocks() as demo:
|
109 |
with gr.Column(elem_id="app-container"):
|
110 |
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
|
111 |
-
gr.Markdown(
|
112 |
-
|
113 |
-
)
|
114 |
-
gr.Markdown(
|
115 |
-
"<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>"
|
116 |
-
)
|
117 |
|
118 |
with gr.Row():
|
119 |
with gr.Column(scale=2.5):
|
120 |
-
result = gr.Image(
|
121 |
-
label="Generated Image", show_label=False, interactive=False
|
122 |
-
)
|
123 |
with gr.Column(scale=1):
|
124 |
prompt = gr.Text(
|
125 |
label="Prompt",
|
@@ -133,39 +164,15 @@ with gr.Blocks() as demo:
|
|
133 |
|
134 |
with gr.Column("Advanced Options"):
|
135 |
with gr.Row():
|
136 |
-
realtime = gr.Checkbox(
|
137 |
-
label="Realtime Toggler",
|
138 |
-
info="If TRUE then uses more GPU but create image in realtime.",
|
139 |
-
value=False,
|
140 |
-
)
|
141 |
latency = gr.Text(label="Latency")
|
142 |
with gr.Row():
|
143 |
seed = gr.Number(label="Seed", value=42)
|
144 |
-
randomize_seed = gr.Checkbox(
|
145 |
-
label="Randomize Seed", value=True
|
146 |
-
)
|
147 |
with gr.Row():
|
148 |
-
width = gr.Slider(
|
149 |
-
|
150 |
-
|
151 |
-
maximum=MAX_IMAGE_SIZE,
|
152 |
-
step=32,
|
153 |
-
value=DEFAULT_WIDTH,
|
154 |
-
)
|
155 |
-
height = gr.Slider(
|
156 |
-
label="Height",
|
157 |
-
minimum=256,
|
158 |
-
maximum=MAX_IMAGE_SIZE,
|
159 |
-
step=32,
|
160 |
-
value=DEFAULT_HEIGHT,
|
161 |
-
)
|
162 |
-
num_inference_steps = gr.Slider(
|
163 |
-
label="Inference Steps",
|
164 |
-
minimum=1,
|
165 |
-
maximum=4,
|
166 |
-
step=1,
|
167 |
-
value=DEFAULT_INFERENCE_STEPS,
|
168 |
-
)
|
169 |
|
170 |
with gr.Row():
|
171 |
gr.Markdown("### 🌟 Inspiration Gallery")
|
@@ -175,7 +182,7 @@ with gr.Blocks() as demo:
|
|
175 |
fn=generate_image,
|
176 |
inputs=[prompt],
|
177 |
outputs=[result, seed, latency],
|
178 |
-
cache_examples="lazy"
|
179 |
)
|
180 |
|
181 |
enhanceBtn.click(
|
@@ -184,7 +191,7 @@ with gr.Blocks() as demo:
|
|
184 |
outputs=[result, seed, latency],
|
185 |
show_progress="full",
|
186 |
queue=False,
|
187 |
-
concurrency_limit=None
|
188 |
)
|
189 |
|
190 |
generateBtn.click(
|
@@ -199,7 +206,7 @@ with gr.Blocks() as demo:
|
|
199 |
def update_ui(realtime_enabled):
|
200 |
return {
|
201 |
prompt: gr.update(interactive=True),
|
202 |
-
generateBtn: gr.update(visible=not realtime_enabled)
|
203 |
}
|
204 |
|
205 |
realtime.change(
|
@@ -207,13 +214,12 @@ with gr.Blocks() as demo:
|
|
207 |
inputs=[realtime],
|
208 |
outputs=[prompt, generateBtn],
|
209 |
queue=False,
|
210 |
-
concurrency_limit=None
|
211 |
)
|
212 |
|
213 |
def realtime_generation(*args):
|
214 |
if args[0]: # If realtime is enabled
|
215 |
-
|
216 |
-
return img, seed, latency
|
217 |
|
218 |
prompt.submit(
|
219 |
fn=generate_image,
|
@@ -221,27 +227,19 @@ with gr.Blocks() as demo:
|
|
221 |
outputs=[result, seed, latency],
|
222 |
show_progress="full",
|
223 |
queue=False,
|
224 |
-
concurrency_limit=None
|
225 |
)
|
226 |
|
227 |
for component in [prompt, width, height, num_inference_steps]:
|
228 |
component.input(
|
229 |
fn=realtime_generation,
|
230 |
-
inputs=[
|
231 |
-
realtime,
|
232 |
-
prompt,
|
233 |
-
seed,
|
234 |
-
width,
|
235 |
-
height,
|
236 |
-
randomize_seed,
|
237 |
-
num_inference_steps,
|
238 |
-
],
|
239 |
outputs=[result, seed, latency],
|
240 |
show_progress="hidden",
|
241 |
trigger_mode="always_last",
|
242 |
-
queue=
|
243 |
-
concurrency_limit=None
|
244 |
)
|
245 |
|
246 |
# Launch the app
|
247 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import spaces
|
5 |
+
import torch
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
8 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
9 |
from custom_pipeline import FluxWithCFGPipeline
|
10 |
|
11 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
12 |
+
|
13 |
# Constants
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
|
|
24 |
)
|
25 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
26 |
pipe.to("cuda")
|
27 |
+
pipe.load_lora_weights('hugovntr/flux-schnell-realism', weight_name='schnell-realism_v2.3.safetensors', adapter_name="better")
|
|
|
|
|
|
|
|
|
28 |
pipe.set_adapters(["better"], adapter_weights=[1.0])
|
29 |
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
|
30 |
pipe.unload_lora_weights()
|
31 |
|
32 |
+
# Memory optimizations
|
33 |
+
pipe.unet.to(memory_format=torch.channels_last) # Channels last
|
34 |
+
pipe.enable_xformers_memory_efficient_attention() # Flash Attention
|
35 |
+
|
36 |
+
# CUDA Graph setup
|
37 |
+
static_inputs = None
|
38 |
+
static_model = None
|
39 |
+
graph = None
|
40 |
+
|
41 |
+
def setup_cuda_graph(prompt, height, width, num_inference_steps):
|
42 |
+
global static_inputs, static_model, graph
|
43 |
+
|
44 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
45 |
+
device = "cuda"
|
46 |
+
num_images_per_prompt = 1
|
47 |
+
|
48 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt(
|
49 |
+
prompt=prompt,
|
50 |
+
prompt_2=None,
|
51 |
+
prompt_embeds=None,
|
52 |
+
pooled_prompt_embeds=None,
|
53 |
+
device=device,
|
54 |
+
num_images_per_prompt=num_images_per_prompt,
|
55 |
+
max_sequence_length=300,
|
56 |
+
lora_scale=None,
|
57 |
+
)
|
58 |
+
|
59 |
+
latents, latent_image_ids = pipe.prepare_latents(
|
60 |
+
batch_size * num_images_per_prompt,
|
61 |
+
pipe.transformer.config.in_channels // 4,
|
62 |
+
height,
|
63 |
+
width,
|
64 |
+
prompt_embeds.dtype,
|
65 |
+
device,
|
66 |
+
None,
|
67 |
+
None,
|
68 |
+
)
|
69 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
70 |
+
image_seq_len = latents.shape[1]
|
71 |
+
mu = calculate_timestep_shift(image_seq_len)
|
72 |
+
|
73 |
+
timesteps, num_inference_steps = prepare_timesteps(
|
74 |
+
pipe.scheduler,
|
75 |
+
num_inference_steps,
|
76 |
+
device,
|
77 |
+
None,
|
78 |
+
sigmas,
|
79 |
+
mu=mu,
|
80 |
+
)
|
81 |
+
|
82 |
+
guidance = torch.full([1], 3.5, device=device, dtype=torch.float16).expand(latents.shape[0]) if pipe.transformer.config.guidance_embeds else None
|
83 |
+
|
84 |
+
static_inputs = {
|
85 |
+
"hidden_states": latents,
|
86 |
+
"timestep": timesteps,
|
87 |
+
"guidance": guidance,
|
88 |
+
"pooled_projections": pooled_prompt_embeds,
|
89 |
+
"encoder_hidden_states": prompt_embeds,
|
90 |
+
"txt_ids": text_ids,
|
91 |
+
"img_ids": latent_image_ids,
|
92 |
+
"joint_attention_kwargs": None,
|
93 |
+
}
|
94 |
|
95 |
+
static_model = torch.cuda.make_graphed_callables(pipe.transformer, (static_inputs,))
|
96 |
+
graph = torch.cuda.CUDAGraph()
|
97 |
+
|
98 |
+
with torch.cuda.graph(graph):
|
99 |
+
static_output = static_model(**static_inputs)
|
100 |
|
101 |
# Inference function
|
102 |
@spaces.GPU(duration=25)
|
103 |
+
def generate_image(prompt, seed=24, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
|
104 |
+
global static_inputs, graph
|
105 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
if randomize_seed:
|
107 |
seed = random.randint(0, MAX_SEED)
|
108 |
generator = torch.Generator().manual_seed(int(float(seed)))
|
109 |
|
110 |
start_time = time.time()
|
111 |
+
|
112 |
+
if static_inputs is None:
|
113 |
+
setup_cuda_graph(prompt, height, width, num_inference_steps)
|
114 |
|
115 |
+
static_inputs["hidden_states"].copy_(pipe.prepare_latents(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
1,
|
117 |
+
pipe.transformer.config.in_channels // 4,
|
118 |
+
height,
|
119 |
+
width,
|
120 |
+
static_inputs["encoder_hidden_states"].dtype,
|
121 |
+
"cuda",
|
122 |
+
generator,
|
123 |
+
None,
|
124 |
+
)[0])
|
125 |
+
|
126 |
+
graph.replay()
|
127 |
+
latents = static_inputs["hidden_states"]
|
128 |
+
|
129 |
+
img = pipe._decode_latents_to_image(latents, height, width, "pil")
|
130 |
+
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
|
|
|
131 |
return img, seed, latency
|
132 |
|
133 |
# Example prompts
|
|
|
145 |
with gr.Blocks() as demo:
|
146 |
with gr.Column(elem_id="app-container"):
|
147 |
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
|
148 |
+
gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
|
149 |
+
gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
|
|
|
|
|
|
|
|
|
150 |
|
151 |
with gr.Row():
|
152 |
with gr.Column(scale=2.5):
|
153 |
+
result = gr.Image(label="Generated Image", show_label=False, interactive=False)
|
|
|
|
|
154 |
with gr.Column(scale=1):
|
155 |
prompt = gr.Text(
|
156 |
label="Prompt",
|
|
|
164 |
|
165 |
with gr.Column("Advanced Options"):
|
166 |
with gr.Row():
|
167 |
+
realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
|
|
|
|
|
|
|
|
|
168 |
latency = gr.Text(label="Latency")
|
169 |
with gr.Row():
|
170 |
seed = gr.Number(label="Seed", value=42)
|
171 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
|
|
172 |
with gr.Row():
|
173 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
|
174 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
|
175 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
with gr.Row():
|
178 |
gr.Markdown("### 🌟 Inspiration Gallery")
|
|
|
182 |
fn=generate_image,
|
183 |
inputs=[prompt],
|
184 |
outputs=[result, seed, latency],
|
185 |
+
cache_examples="lazy"
|
186 |
)
|
187 |
|
188 |
enhanceBtn.click(
|
|
|
191 |
outputs=[result, seed, latency],
|
192 |
show_progress="full",
|
193 |
queue=False,
|
194 |
+
concurrency_limit=None
|
195 |
)
|
196 |
|
197 |
generateBtn.click(
|
|
|
206 |
def update_ui(realtime_enabled):
|
207 |
return {
|
208 |
prompt: gr.update(interactive=True),
|
209 |
+
generateBtn: gr.update(visible=not realtime_enabled)
|
210 |
}
|
211 |
|
212 |
realtime.change(
|
|
|
214 |
inputs=[realtime],
|
215 |
outputs=[prompt, generateBtn],
|
216 |
queue=False,
|
217 |
+
concurrency_limit=None
|
218 |
)
|
219 |
|
220 |
def realtime_generation(*args):
|
221 |
if args[0]: # If realtime is enabled
|
222 |
+
return next(generate_image(*args[1:]))
|
|
|
223 |
|
224 |
prompt.submit(
|
225 |
fn=generate_image,
|
|
|
227 |
outputs=[result, seed, latency],
|
228 |
show_progress="full",
|
229 |
queue=False,
|
230 |
+
concurrency_limit=None
|
231 |
)
|
232 |
|
233 |
for component in [prompt, width, height, num_inference_steps]:
|
234 |
component.input(
|
235 |
fn=realtime_generation,
|
236 |
+
inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
outputs=[result, seed, latency],
|
238 |
show_progress="hidden",
|
239 |
trigger_mode="always_last",
|
240 |
+
queue=False,
|
241 |
+
concurrency_limit=None
|
242 |
)
|
243 |
|
244 |
# Launch the app
|
245 |
+
demo.queue(max_size=5, concurrency_count=1).launch()
|