Ryukijano's picture
Update app.py
70eea75 verified
raw
history blame
10.8 kB
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gradio as gr
import numpy as np
import random
import spaces
import time
from diffusers import DiffusionPipeline, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0
from custom_pipeline import FluxWithCFGPipeline
import asyncio
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_WIDTH = 1024
DEFAULT_HEIGHT = 1024
DEFAULT_INFERENCE_STEPS = 1
# Device and model setup
dtype = torch.float16
pipe = FluxWithCFGPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
pipe.to("cuda")
pipe.load_lora_weights(
"hugovntr/flux-schnell-realism",
weight_name="schnell-realism_v2.3.safetensors",
adapter_name="better",
)
pipe.set_adapters(["better"], adapter_weights=[1.0])
pipe.fuse_lora(adapter_name=["better"], lora_scale=1.0)
pipe.unload_lora_weights()
# Correctly set memory format
pipe.transformer.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
# Conditionally enable xformers only for the transformer
if hasattr(pipe, "transformer") and torch.cuda.is_available():
try:
pipe.transformer.enable_xformers_memory_efficient_attention()
except Exception as e:
print(
"Warning: Could not enable xformers for the transformer due to the following error:"
)
print(e)
torch.cuda.empty_cache()
# Inference function
@spaces.GPU(duration=25)
def generate_image(
prompt,
seed=24,
width=DEFAULT_WIDTH,
height=DEFAULT_HEIGHT,
randomize_seed=False,
num_inference_steps=2,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(int(float(seed)))
start_time = time.time()
# Initialize static inputs for CUDA graph
static_latents = torch.randn(
(1, 4, height // 8, width // 8), dtype=dtype, device="cuda"
)
static_prompt_embeds = torch.randn(
(2, 77, 768), dtype=dtype, device="cuda"
) # Adjust dimensions as needed
static_pooled_prompt_embeds = torch.randn(
(2, 768), dtype=dtype, device="cuda"
) # Adjust dimensions as needed
static_text_ids = torch.tensor([[[1, 2, 3]]], dtype=torch.int32, device="cuda")
static_latent_image_ids = torch.tensor([1], dtype=torch.int64, device="cuda")
static_timestep = torch.tensor([999], dtype=dtype, device="cuda")
# Warmup
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
for _ in range(3):
_ = pipe.transformer(
hidden_states=static_latents,
timestep=static_timestep / 1000,
guidance=None,
pooled_projections=static_pooled_prompt_embeds,
encoder_hidden_states=static_prompt_embeds,
txt_ids=static_text_ids,
img_ids=static_latent_image_ids,
joint_attention_kwargs=pipe.joint_attention_kwargs,
return_dict=False,
)
torch.cuda.current_stream().wait_stream(s)
# Capture CUDA Graph
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
static_noise_pred = pipe.transformer(
hidden_states=static_latents,
timestep=static_timestep / 1000,
guidance=None,
pooled_projections=static_pooled_prompt_embeds,
encoder_hidden_states=static_prompt_embeds,
txt_ids=static_text_ids,
img_ids=static_latent_image_ids,
joint_attention_kwargs=pipe.joint_attention_kwargs,
return_dict=False,
)[0]
static_latents_out = pipe.scheduler.step(
static_noise_pred, static_timestep, static_latents, return_dict=False
)[0]
static_output = pipe._decode_latents_to_image(
static_latents_out, height, width, "pil"
)
# Graph-based generation function
def generate_with_graph(
latents,
prompt_embeds,
pooled_prompt_embeds,
text_ids,
latent_image_ids,
timestep,
):
static_latents.copy_(latents)
static_prompt_embeds.copy_(prompt_embeds)
static_pooled_prompt_embeds.copy_(pooled_prompt_embeds)
static_text_ids.copy_(text_ids)
static_latent_image_ids.copy_(latent_image_ids)
static_timestep.copy_(timestep)
g.replay()
return static_output
# Only generate the last image in the sequence
img = pipe.generate_images(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
generate_with_graph=generate_with_graph,
)
latency = f"Latency: {(time.time()-start_time):.2f} seconds"
return img, seed, latency
# Example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cute white cat holding a sign that says hello world",
"an anime illustration of Steve Jobs",
"Create image of Modern house in minecraft style",
"photo of a woman on the beach, shot from above. She is facing the sea, while wearing a white dress. She has long blonde hair",
"Selfie photo of a wizard with long beard and purple robes, he is apparently in the middle of Tokyo. Probably taken from a phone.",
"Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
]
# --- Gradio UI ---
with gr.Blocks() as demo:
with gr.Column(elem_id="app-container"):
gr.Markdown("# 🎨 Realtime FLUX Image Generator")
gr.Markdown(
"Generate stunning images in real-time with Modified Flux.Schnell pipeline."
)
gr.Markdown(
"<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>"
)
with gr.Row():
with gr.Column(scale=2.5):
result = gr.Image(
label="Generated Image", show_label=False, interactive=False
)
with gr.Column(scale=1):
prompt = gr.Text(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3,
show_label=False,
container=False,
)
generateBtn = gr.Button("πŸ–ΌοΈ Generate Image")
enhanceBtn = gr.Button("πŸš€ Enhance Image")
with gr.Column("Advanced Options"):
with gr.Row():
realtime = gr.Checkbox(
label="Realtime Toggler",
info="If TRUE then uses more GPU but create image in realtime.",
value=False,
)
latency = gr.Text(label="Latency")
with gr.Row():
seed = gr.Number(label="Seed", value=42)
randomize_seed = gr.Checkbox(
label="Randomize Seed", value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_WIDTH,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_HEIGHT,
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=4,
step=1,
value=DEFAULT_INFERENCE_STEPS,
)
with gr.Row():
gr.Markdown("### 🌟 Inspiration Gallery")
with gr.Row():
gr.Examples(
examples=examples,
fn=generate_image,
inputs=[prompt],
outputs=[result, seed, latency],
cache_examples="lazy",
)
enhanceBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None,
)
generateBtn.click(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
api_name="RealtimeFlux",
queue=False,
)
def update_ui(realtime_enabled):
return {
prompt: gr.update(interactive=True),
generateBtn: gr.update(visible=not realtime_enabled),
}
realtime.change(
fn=update_ui,
inputs=[realtime],
outputs=[prompt, generateBtn],
queue=False,
concurrency_limit=None,
)
async def realtime_generation(*args):
if args[0]: # If realtime is enabled
loop = asyncio.get_event_loop()
result = await loop.run_in_executor(None, next, generate_image(*args[1:]))
return result
prompt.submit(
fn=generate_image,
inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
outputs=[result, seed, latency],
show_progress="full",
queue=False,
concurrency_limit=None,
)
for component in [prompt, width, height, num_inference_steps]:
component.input(
fn=realtime_generation,
inputs=[
realtime,
prompt,
seed,
width,
height,
randomize_seed,
num_inference_steps,
],
outputs=[result, seed, latency],
show_progress="hidden",
trigger_mode="always_last",
queue=True,
concurrency_limit=None,
)
# Launch the app
demo.launch()