Ryukijano commited on
Commit
eafa330
·
verified ·
1 Parent(s): 4ee90cf

Upload 5 files

Browse files
Files changed (5) hide show
  1. README.md +11 -13
  2. app.py +136 -0
  3. app_mast3r.py +206 -0
  4. catmlp_dpt_head.py +94 -0
  5. requirements.txt +15 -0
README.md CHANGED
@@ -1,13 +1,11 @@
1
- ---
2
- title: Control Net On Surface Normals
3
- emoji: 🏃
4
- colorFrom: yellow
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 5.9.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: ControlNet_on_human_surface_normals
3
+ emoji:
4
+ colorFrom: purple
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 4.26.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
 
 
app.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
3
+ from diffusers.utils import load_image
4
+ from PIL import Image
5
+ import torch
6
+ import numpy as np
7
+ import cv2
8
+ import gradio as gr
9
+ from torchvision import transforms
10
+ import fire
11
+ import os
12
+
13
+ controlnet = ControlNetModel.from_pretrained(
14
+ "geyongtao/HumanWild",
15
+ torch_dtype=torch.float16
16
+ ).to('cuda')
17
+
18
+ vae = AutoencoderKL.from_pretrained(
19
+ "madebyollin/sdxl-vae-fp16-fix",
20
+ torch_dtype=torch.float16).to("cuda")
21
+
22
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
23
+ "stabilityai/stable-diffusion-xl-base-1.0",
24
+ controlnet=controlnet,
25
+ vae=vae,
26
+ torch_dtype=torch.float16,
27
+ use_safetensors=True,
28
+ low_cpu_mem_usage=True,
29
+ offload_state_dict=True,
30
+ ).to('cuda')
31
+ pipe.controlnet.to(memory_format=torch.channels_last)
32
+
33
+ # pipe.enable_xformers_memory_efficient_attention()
34
+ pipe.force_zeros_for_empty_prompt = False
35
+
36
+
37
+ def resize_image(image):
38
+ image = image.convert('RGB')
39
+ current_size = image.size
40
+ if current_size[0] > current_size[1]:
41
+ center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
42
+ else:
43
+ center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
44
+ resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
45
+ return resized_image
46
+
47
+ def get_normal_map(image):
48
+ image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
49
+ with torch.no_grad(), torch.autocast("cuda"):
50
+ depth_map = depth_estimator(image).predicted_depth
51
+ image = transforms.functional.center_crop(image, min(image.shape[-2:]))
52
+ depth_map = torch.nn.functional.interpolate(
53
+ depth_map.unsqueeze(1),
54
+ size=(1024, 1024),
55
+ mode="bicubic",
56
+ align_corners=False,
57
+ )
58
+ depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
59
+ depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
60
+ depth_map = (depth_map - depth_min) / (depth_max - depth_min)
61
+ image = torch.cat([depth_map] * 3, dim=1)
62
+ image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
63
+ image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
64
+ return image
65
+
66
+
67
+ @spaces.GPU
68
+ def generate_(prompt, negative_prompt, normal_image, num_steps, controlnet_conditioning_scale, seed):
69
+ generator = torch.Generator("cuda").manual_seed(seed)
70
+ images = pipe(
71
+ prompt,
72
+ negative_prompt=negative_prompt,
73
+ image=normal_image,
74
+ num_inference_steps=num_steps,
75
+ controlnet_conditioning_scale=float(controlnet_conditioning_scale),
76
+ num_images_per_prompt=2,
77
+ generator=generator,
78
+ ).images
79
+ return images
80
+
81
+ @spaces.GPU
82
+ def process(normal_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
83
+ # resize input_image to 1024x1024
84
+ normal_image = resize_image(normal_image)
85
+ # depth_image = get_depth_map(input_image)
86
+ images = generate_(prompt, negative_prompt, normal_image, num_steps, controlnet_conditioning_scale, seed)
87
+
88
+ return [images[0], images[1]]
89
+
90
+
91
+ def run_demo():
92
+
93
+ _TITLE = '''3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models'''
94
+
95
+ block = gr.Blocks().queue()
96
+
97
+ with block:
98
+ gr.Markdown("# 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models ")
99
+ gr.HTML('''
100
+ <p style="margin-bottom: 10px; font-size: 94%">
101
+ This is a demo for Surface Normal ControlNet that using
102
+ <a href="https://huggingface.co/geyongtao/HumanWild" target="_blank"> HumanWild model</a> pretrained weight.
103
+ <a style="display:inline-block; margin-left: .5em" href='https://github.com/YongtaoGe/WildHuman/'><img src='https://img.shields.io/github/stars/YongtaoGe/WildHuman?style=social' /></a>
104
+ </p>
105
+ ''')
106
+ with gr.Row():
107
+ with gr.Column():
108
+ input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
109
+
110
+ example_folder = os.path.join(os.path.dirname(__file__), "./assets")
111
+ example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
112
+ gr.Examples(
113
+ examples=example_fns,
114
+ inputs=[input_image],
115
+ cache_examples=False,
116
+ label='Examples (click one of the images below to start)',
117
+ examples_per_page=30
118
+ )
119
+
120
+ prompt = gr.Textbox(label="Prompt", value="a person, in the wild")
121
+ negative_prompt = gr.Textbox(visible=False, label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
122
+ num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=50, value=30, step=1)
123
+ controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=1.0, value=0.95, step=0.05)
124
+ seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
125
+ run_button = gr.Button(value="Run")
126
+
127
+ with gr.Column():
128
+ result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto')
129
+ ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
130
+
131
+ run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
132
+
133
+ block.launch(debug = True)
134
+
135
+ if __name__ == '__main__':
136
+ fire.Fire(run_demo)
app_mast3r.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import spaces
4
+ import torch
5
+ from gradio_rerun import Rerun
6
+ import rerun as rr
7
+ import rerun.blueprint as rrb
8
+ from pathlib import Path
9
+ import uuid
10
+
11
+ from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result
12
+ from mini_dust3r.model import AsymmetricCroCo3DStereo
13
+ from mini_dust3r.utils.misc import (
14
+ fill_default_args,
15
+ freeze_all_params,
16
+ is_symmetrized,
17
+ interleave,
18
+ transpose_to_landscape,
19
+ )
20
+
21
+ import os
22
+ from mini_dust3r.model import load_model
23
+ from catmlp_dpt_head import Cat_MLP_LocalFeatures_DPT_Pts3d, postprocess
24
+
25
+ DEVICE = "cuda" if torch.cuda.is_available() else "CPU"
26
+
27
+ # model = AsymmetricCroCo3DStereo.from_pretrained(
28
+ # "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt"
29
+ # ).to(DEVICE)
30
+
31
+
32
+ from mini_dust3r.heads.linear_head import LinearPts3d
33
+ from mini_dust3r.heads.dpt_head import create_dpt_head
34
+
35
+ def head_factory(head_type, output_mode, net, has_conf=False):
36
+ """" build a prediction head for the decoder
37
+ """
38
+ if head_type == 'linear' and output_mode == 'pts3d':
39
+ return LinearPts3d(net, has_conf)
40
+ elif head_type == 'dpt' and output_mode == 'pts3d':
41
+ return create_dpt_head(net, has_conf=has_conf)
42
+ if head_type == 'catmlp+dpt' and output_mode.startswith('pts3d+desc'):
43
+ local_feat_dim = int(output_mode[10:])
44
+ assert net.dec_depth > 9
45
+ l2 = net.dec_depth
46
+ feature_dim = 256
47
+ last_dim = feature_dim // 2
48
+ out_nchan = 3
49
+ ed = net.enc_embed_dim
50
+ dd = net.dec_embed_dim
51
+ return Cat_MLP_LocalFeatures_DPT_Pts3d(net, local_feat_dim=local_feat_dim, has_conf=has_conf,
52
+ num_channels=out_nchan + has_conf,
53
+ feature_dim=feature_dim,
54
+ last_dim=last_dim,
55
+ hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2],
56
+ dim_tokens=[ed, dd, dd, dd],
57
+ postprocess=postprocess,
58
+ depth_mode=net.depth_mode,
59
+ conf_mode=net.conf_mode,
60
+ head_type='regression')
61
+ else:
62
+ raise NotImplementedError(f"unexpected {head_type=} and {output_mode=}")
63
+
64
+
65
+ class AsymmetricMASt3R(AsymmetricCroCo3DStereo):
66
+ def __init__(self, desc_mode=('norm'), two_confs=False, desc_conf_mode=None, **kwargs):
67
+ self.desc_mode = desc_mode
68
+ self.two_confs = two_confs
69
+ self.desc_conf_mode = desc_conf_mode
70
+ super().__init__(**kwargs)
71
+
72
+ @classmethod
73
+ def from_pretrained(cls, pretrained_model_name_or_path, **kw):
74
+ if os.path.isfile(pretrained_model_name_or_path):
75
+ return load_model(pretrained_model_name_or_path, device='cpu')
76
+ else:
77
+ return super(AsymmetricMASt3R, cls).from_pretrained(pretrained_model_name_or_path, **kw)
78
+
79
+ def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, **kw):
80
+ assert img_size[0] % patch_size == 0 and img_size[
81
+ 1] % patch_size == 0, f'{img_size=} must be multiple of {patch_size=}'
82
+ self.output_mode = output_mode
83
+ self.head_type = head_type
84
+ self.depth_mode = depth_mode
85
+ self.conf_mode = conf_mode
86
+ if self.desc_conf_mode is None:
87
+ self.desc_conf_mode = conf_mode
88
+ # allocate heads
89
+ self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
90
+ self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
91
+ # magic wrapper
92
+ self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
93
+ self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)
94
+
95
+
96
+
97
+ model = AsymmetricMASt3R.from_pretrained(
98
+ "naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric").to(DEVICE)
99
+
100
+
101
+ def create_blueprint(image_name_list: list[str], log_path: Path) -> rrb.Blueprint:
102
+ # dont show 2d views if there are more than 4 images as to not clutter the view
103
+ if len(image_name_list) > 4:
104
+ blueprint = rrb.Blueprint(
105
+ rrb.Horizontal(
106
+ rrb.Spatial3DView(origin=f"{log_path}"),
107
+ ),
108
+ collapse_panels=True,
109
+ )
110
+ else:
111
+ blueprint = rrb.Blueprint(
112
+ rrb.Horizontal(
113
+ contents=[
114
+ rrb.Spatial3DView(origin=f"{log_path}"),
115
+ rrb.Vertical(
116
+ contents=[
117
+ rrb.Spatial2DView(
118
+ origin=f"{log_path}/camera_{i}/pinhole/",
119
+ contents=[
120
+ "+ $origin/**",
121
+ ],
122
+ )
123
+ for i in range(len(image_name_list))
124
+ ]
125
+ ),
126
+ ],
127
+ column_shares=[3, 1],
128
+ ),
129
+ collapse_panels=True,
130
+ )
131
+ return blueprint
132
+
133
+
134
+ @spaces.GPU
135
+ def predict(image_name_list: list[str] | str):
136
+ # check if is list or string and if not raise error
137
+ if not isinstance(image_name_list, list) and not isinstance(image_name_list, str):
138
+ raise gr.Error(
139
+ f"Input must be a list of strings or a string, got: {type(image_name_list)}"
140
+ )
141
+ uuid_str = str(uuid.uuid4())
142
+ filename = Path(f"/tmp/gradio/{uuid_str}.rrd")
143
+ rr.init(f"{uuid_str}")
144
+ log_path = Path("world")
145
+
146
+ if isinstance(image_name_list, str):
147
+ image_name_list = [image_name_list]
148
+
149
+ optimized_results: OptimizedResult = inferece_dust3r(
150
+ image_dir_or_list=image_name_list,
151
+ model=model,
152
+ device=DEVICE,
153
+ batch_size=1,
154
+ )
155
+
156
+ blueprint: rrb.Blueprint = create_blueprint(image_name_list, log_path)
157
+ rr.send_blueprint(blueprint)
158
+
159
+ rr.set_time_sequence("sequence", 0)
160
+ log_optimized_result(optimized_results, log_path)
161
+ rr.save(filename.as_posix())
162
+ return filename.as_posix()
163
+
164
+
165
+ with gr.Blocks(
166
+ css=""".gradio-container {margin: 0 !important; min-width: 100%};""",
167
+ title="Mini-DUSt3R Demo",
168
+ ) as demo:
169
+ # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
170
+ gr.HTML('<h2 style="text-align: center;">Mini-DUSt3R Demo</h2>')
171
+ gr.HTML(
172
+ '<p style="text-align: center;">Unofficial DUSt3R demo using the mini-dust3r pip package</p>'
173
+ )
174
+ gr.HTML(
175
+ '<p style="text-align: center;">More info <a href="https://github.com/pablovela5620/mini-dust3r">here</a></p>'
176
+ )
177
+ with gr.Tab(label="Single Image"):
178
+ with gr.Column():
179
+ single_image = gr.Image(type="filepath", height=300)
180
+ run_btn_single = gr.Button("Run")
181
+ rerun_viewer_single = Rerun(height=900)
182
+ run_btn_single.click(
183
+ fn=predict, inputs=[single_image], outputs=[rerun_viewer_single]
184
+ )
185
+
186
+ example_single_dir = Path("examples/single_image")
187
+ example_single_files = sorted(example_single_dir.glob("*.png"))
188
+
189
+ examples_single = gr.Examples(
190
+ examples=example_single_files,
191
+ inputs=[single_image],
192
+ outputs=[rerun_viewer_single],
193
+ fn=predict,
194
+ cache_examples="lazy",
195
+ )
196
+ with gr.Tab(label="Multi Image"):
197
+ with gr.Column():
198
+ multi_files = gr.File(file_count="multiple")
199
+ run_btn_multi = gr.Button("Run")
200
+ rerun_viewer_multi = Rerun(height=900)
201
+ run_btn_multi.click(
202
+ fn=predict, inputs=[multi_files], outputs=[rerun_viewer_multi]
203
+ )
204
+
205
+
206
+ demo.launch()
catmlp_dpt_head.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2024-present Naver Corporation. All rights reserved.
2
+ # Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
3
+ #
4
+ # --------------------------------------------------------
5
+ # MASt3R heads
6
+ # --------------------------------------------------------
7
+ import torch
8
+ import torch.nn.functional as F
9
+
10
+ from mini_dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf # noqa
11
+ from mini_dust3r.heads.dpt_head import PixelwiseTaskWithDPT # noqa
12
+ from mini_dust3r.croco.blocks import Mlp # noqa
13
+
14
+ def reg_desc(desc, mode):
15
+ if 'norm' in mode:
16
+ desc = desc / desc.norm(dim=-1, keepdim=True)
17
+ else:
18
+ raise ValueError(f"Unknown desc mode {mode}")
19
+ return desc
20
+
21
+
22
+ def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None):
23
+ if desc_conf_mode is None:
24
+ desc_conf_mode = conf_mode
25
+ fmap = out.permute(0, 2, 3, 1) # B,H,W,D
26
+ res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode))
27
+ if conf_mode is not None:
28
+ res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode)
29
+ if desc_dim is not None:
30
+ start = 3 + int(conf_mode is not None)
31
+ res['desc'] = reg_desc(fmap[..., start:start + desc_dim], mode=desc_mode)
32
+ if two_confs:
33
+ res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode)
34
+ else:
35
+ res['desc_conf'] = res['conf'].clone()
36
+ return res
37
+
38
+
39
+ class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT):
40
+ """ Mixture between MLP and DPT head that outputs 3d points and local features (with MLP).
41
+ The input for both heads is a concatenation of Encoder and Decoder outputs
42
+ """
43
+
44
+ def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None,
45
+ num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs):
46
+ super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx,
47
+ dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type)
48
+ self.local_feat_dim = local_feat_dim
49
+
50
+ patch_size = net.patch_embed.patch_size
51
+ if isinstance(patch_size, tuple):
52
+ assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance(
53
+ patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints."
54
+ assert patch_size[0] == patch_size[1], "Error, non square patches not managed"
55
+ patch_size = patch_size[0]
56
+ self.patch_size = patch_size
57
+
58
+ self.desc_mode = net.desc_mode
59
+ self.has_conf = has_conf
60
+ self.two_confs = net.two_confs # independent confs for 3D regr and descs
61
+ self.desc_conf_mode = net.desc_conf_mode
62
+ idim = net.enc_embed_dim + net.dec_embed_dim
63
+
64
+ self.head_local_features = Mlp(in_features=idim,
65
+ hidden_features=int(hidden_dim_factor * idim),
66
+ out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2)
67
+
68
+ def forward(self, decout, img_shape):
69
+ # pass through the heads
70
+ pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1]))
71
+
72
+ # recover encoder and decoder outputs
73
+ enc_output, dec_output = decout[0], decout[-1]
74
+ cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate
75
+ H, W = img_shape
76
+ B, S, D = cat_output.shape
77
+
78
+ # extract local_features
79
+ local_features = self.head_local_features(cat_output) # B,S,D
80
+ local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size)
81
+ local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W
82
+
83
+ # post process 3D pts, descriptors and confidences
84
+ out = torch.cat([pts3d, local_features], dim=1)
85
+ if self.postprocess:
86
+ out = self.postprocess(out,
87
+ depth_mode=self.depth_mode,
88
+ conf_mode=self.conf_mode,
89
+ desc_dim=self.local_feat_dim,
90
+ desc_mode=self.desc_mode,
91
+ two_confs=self.two_confs,
92
+ desc_conf_mode=self.desc_conf_mode)
93
+ return out
94
+
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #mini-dust3r==0.1.1
2
+ #pillow-heif
3
+ #rerun-sdk==0.15.1
4
+
5
+ accelerate
6
+ spaces
7
+ transformers
8
+ safetensors
9
+ opencv-python
10
+ diffusers
11
+ gradio
12
+ torch
13
+ torchvision
14
+ xformers
15
+ fire