Spaces:
Sleeping
Sleeping
File size: 1,471 Bytes
f943728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import streamlit as st
import joblib
import numpy as np
def load_model():
with open('saved_steps.pkl', 'rb') as file:
data = joblib.load(file)
return data
data = load_model()
regressor = data["model"]
le_country = data["le_country"]
le_education = data["le_education"]
def show_predict_page():
st.title("Software Developer Salary Prediction")
st.write("""### We need some information to predict the salary""")
countries = (
"United States of America",
"Germany",
"United Kingdom of Great Britain and Northern Ireland",
"India",
"Canada",
"France",
"Brazil",
"Spain",
"Netherlands",
"Australia",
"Italy",
"Poland",
"Sweden",
"Russian Federation",
"Switzerland",
)
education = (
"Less than a Bachelors",
"Bachelor’s degree",
"Master’s degree",
"Post grad",
)
country = st.selectbox("Country", countries)
education = st.selectbox("Education Level", education)
experience = st.slider("Years of Experience", 0, 50, 3)
ok = st.button("Calculate Salary")
if ok:
X = np.array([[country, education, experience ]])
X[:, 0] = le_country.transform(X[:,0])
X[:, 1] = le_education.transform(X[:,1])
X = X.astype(float)
salary = regressor.predict(X)
st.subheader(f"The estimated salary is ${salary[0]:.2f}") |